1887

Abstract

A novel bacterial strain, designated GCR0105, was isolated from a water sample of the Mangyung estuary enclosed by the Saemangeum Embankment, located in JEOLlabuk-do, South Korea. Cells of strain GCR0105 were Gram-stain-negative, non-motile and rod-shaped. Colonies of strain GCR0105 were pale yellow-pigmented on R2A agar and nutrient agar media, and were able to grow at 15–30 °C (optimum 25 °C) and pH 6.5–8.5 (optimum pH 7.5). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GCR0105 was related most closely to Gsoil 643 (93.14 % similarity). The polar lipid profile of strain GCR0105 comprised phosphatidylethanolamine, two unknown aminolipids, an unknown aminophospholipid and four unknown lipids. The DNA G+C content of strain GCR0105 was 42.9 mol% and the respiratory quinone was MK-7.On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain GCR0105 represents a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is GCR0105 ( = KACC 16454 = JCM 17919).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000249
2015-07-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2209.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000249&mimeType=html&fmt=ahah

References

  1. Bowman J.P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868 [PubMed].
    [Google Scholar]
  2. Collins M.D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;.
    [Google Scholar]
  3. Cowan S.T., Steel K.J., Barrow G., Feltham R.. ( 2004;). Cowan and Steel's Manual for the Identification of Medical Bacteria., Cambridge: Cambridge University;.
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . In Methods in Enzymology, pp. 138–146. Edited by Colowick S. P., Kaplan N. O..vol. 1 New York: Academic Press; [CrossRef].
    [Google Scholar]
  7. Holdeman L.V., Moore W.E.C., Cato E.P.. ( 1977;). Anaerobe Laboratory Manual, 4th edn.., Blacksburg, VA: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  8. Kämpfer P., Lodders N., Falsen E.. ( 2011;). Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga Sediminibacterium Lacibacter Flavihumibacter Flavisolibacter Niabella Niastella Segetibacter Parasegetibacter Terrimonas Ferruginibacter Filimonas Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 61: 518–523 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  11. Marchesi J.R., Sato T., Weightman A.J., Martin T.A., Fry J.C., Hiom S.J., Dymock D., Wade W.G.. ( 1998;). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64: 795–799 [PubMed].
    [Google Scholar]
  12. Minnikin D., O'Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  13. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  14. Sangkhobol V., Skerman V.B.D.. ( 1981;). Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 31: 285–293 [CrossRef].
    [Google Scholar]
  15. Scherer P., Kneifel H.. ( 1983;). Distribution of polyamines in methanogenic bacteria. J Bacteriol 154: 1315–1322 [PubMed].
    [Google Scholar]
  16. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 54: 31–36.
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  18. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  19. Tittsler R.P., Sandholzer L.A.. ( 1936;). The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31: 575–580 [PubMed].
    [Google Scholar]
  20. Wang Y., Cai F., Tang Y., Dai J., Qi H., Rahman E., Peng F., Fang C.. ( 2011;). Flavitalea populi gen. nov., sp. nov., isolated from soil of a Euphrates poplar (Populus euphratica) forest. Int J Syst Evol Microbiol 61: 1554–1560 [CrossRef] [PubMed].
    [Google Scholar]
  21. Yoon M.H., Im W.T.. ( 2007;). Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 57: 1834–1839 [CrossRef] [PubMed].
    [Google Scholar]
  22. Zhang K., Wang Y., Tang Y., Dai J., Zhang L., An H., Luo G., Rahman E., Fang C.. ( 2010a;). Niastella populi sp. nov., isolated from soil of Euphrates poplar (Populus euphratica) forest, and emended description of the genus Niastella. Int J Syst Evol Microbiol 60: 542–545 [CrossRef] [PubMed].
    [Google Scholar]
  23. Zhang N.N., Qu J.H., Yuan H.L., Sun Y.M., Yang J.S.. ( 2010b;). Flavihumibacter petaseus gen. nov., sp. nov., isolated from soil of a subtropical rainforest. Int J Syst Evol Microbiol 60: 1609–1612 [CrossRef] [PubMed].
    [Google Scholar]
  24. Zhao R., Chen X.Y., Li X.D., Tian Y., Kong B.H., Chen Z.L., Li Y.H.. ( 2014;). Cnuella takakiae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 64: 607–612 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000249
Loading
/content/journal/ijsem/10.1099/ijs.0.000249
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error