1887

Abstract

A Gram-reaction-negative, rod-shaped marine bacterium, designated MEBiC08158, was isolated from sediments collected from Taean County, Korea, near the tanker oil spill accident. 16S rRNA gene sequence analysis revealed that strain MEBiC08158 was closely related to R8-12 (99.5 % similarity) but was distinguishable from other members of the genus (93.7–97.1 %). The DNA–DNA hybridization value between strain MEBiC08158 and R8-12 was 58.4 %. Growth of strain MEBiC08158 was observed at 15–43 °C (optimum 37–40 °C), at pH 6.0–9.5 (optimum pH 7.0–8.0) and with 0.5–16 % NaCl (optimum 1.5–3.0 %). The dominant fatty acids were C : , C :  cyclo ω8, C : , C : ω7, C :  3-OH and summed feature 3 (comprising C :  2-OH and/or C : ω7). Several phenotypic characteristics differentiate strain MEBiC08158 from phylogenetically close members of the genus . Therefore, strain MEBiC08158 should be classified as representing a novel species of the genus , for which the name A sp. nov. is proposed. The type strain is MEBiC08158 ( = KCCM 42990 = JCM 18425).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000244
2015-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2204.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000244&mimeType=html&fmt=ahah

References

  1. Collins M.D.. ( 1985;). Isoprenoid quinone analysis in bacterial classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minikin D. E.. London: Academic Press;.
    [Google Scholar]
  2. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  3. Fernández-Martínez J., Pujalte M.J., García-Martínez J., Mata M., Garay E., Rodríguez-Valeral F.. ( 2003;). Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53: 331–338 [CrossRef] [PubMed].
    [Google Scholar]
  4. Fitch W.M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  5. Giovannoni S.J.. ( 1991;). The polymerase chain reaction. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 177–203. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  6. Golyshin P.N., Harayama S., Timmis K.N., Yakimov M.M.. ( 2005;). Family Alcanivoraceae. . In Bergey's Manual of Systematic Bacteriology, pp. 295–298. Edited by Garrity G..2, 2nd edn.., New York: Springer;.
    [Google Scholar]
  7. Harayama S., Kishira H., Kasai Y., Shutsubo K.. ( 1999;). Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1: 63–70 [PubMed].
    [Google Scholar]
  8. Kaneko T., Nozaki R., Aizawa K.. ( 1978;). Deoxyribonucleic acid relatedness between Bacillus anthracis Bacillus cereus Bacillus thuringiensis. Microbiol Immunol 22: 639–641 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y.S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kwon K.K., Lee H.-S., Yang S.H., Kim S.-J.. ( 2005;). Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the ‘Alphaproteobacteria’. Int J Syst Evol Microbiol 55: 2033–2037 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lai Q., Wang L., Liu Y., Fu Y., Zhong H., Wang B., Chen L., Wang J., Sun F., Shao Z.. ( 2011;). Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 61: 1370–1374 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lai Q., Wang J., Gu L., Zheng T., Shao Z.. ( 2013;). Alcanivorax marinus sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 63: 4428–4432 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lee J.-W., Kwon K.K., Azizi A., Oh H.-M., Kim W., Bahk J.-J., Lee D.-H., Lee J.-H.. ( 2013;). Microbial community structures of methane hydrate bearing sediments in the Ulleung Basin. East Sea of Korea. Mar Pet Geol 47: 136–146 [CrossRef].
    [Google Scholar]
  14. Liu C., Shao Z.. ( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55: 1181–1186 [CrossRef] [PubMed].
    [Google Scholar]
  15. Minnkin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  16. Rivas R., García-Fraile P., Peix A., Mateos P.F., Martínez-Molina E., Velázquez E.. ( 2007;). Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 57: 1331–1335 [CrossRef] [PubMed].
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  18. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  19. Sohn J.H., Kwon K.K., Kang J.-H., Jung H.-B., Kim S.-J.. ( 2004;). Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54: 1483–1487 [CrossRef] [PubMed].
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  21. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  22. Yakimov M.M., Denaro R., Genovese M., Cappello S., D'Auria G., Chernikova T.N., Timmis K.N., Golyshin P.N., Giluliano L.. ( 2005;). Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7: 1426–1441 [CrossRef] [PubMed].
    [Google Scholar]
  23. Yakimov M.M., Timmis K.N., Golyshin P.N.. ( 2007;). Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18: 257–266 [CrossRef] [PubMed].
    [Google Scholar]
  24. Yang S.-H., Kwon K.K., Lee H.-S., Kim S.-J.. ( 2006;). Shewanella spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 56: 2879–2882 [CrossRef] [PubMed].
    [Google Scholar]
  25. Yang S.-H., Seo H.-S., Oh H.-M., Kim S.-J., Lee J.-H., Kwon K.K.. ( 2013;). Brumimicrobium mesophilum sp. nov., isolated from a tidal flat sediment, and emended descriptions of the genus Brumimicrobium Brumimicrobium glaciale.. Int J Syst Evol Microbiol 63: 1105–1110 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000244
Loading
/content/journal/ijsem/10.1099/ijs.0.000244
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error