1887

Abstract

Strain G18, a Gram-stain-negative, aerobic, rod-shaped, motile, non-fermentative, yellow-pigmented bacterium, was isolated from Red Sea sediment. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain G18 was most closely related to PG2S01 with 95.3 % similarity. Growth of strain G18 occurred at 10–42 °C (optimum 28–37 °C), pH 5.0–9.0 (optimum pH 6.0–8.0) and in the presence of 0.5–10 % NaCl (optimum 2–5 %). The major fatty acids of strain G18 were iso-C, summed feature 3 (Cω7 and/or Cω6), iso-C G and iso-C 3-OH. The major polar lipids were phosphatidylethanolamine, unidentified aminolipids, phospholipids and other lipids. The predominant quinone was menaquinone 6 (MK-6). The G+C content of the genomic DNA from strain G18 was 39.0 mol%. Based on the phylogenetic and phenotypic properties, strain G18 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is G18 ( = CGMCC 1.14954 = JCM 30614).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000243
2015-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2199.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000243&mimeType=html&fmt=ahah

References

  1. Bernardet J.F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  2. Collins M.D., Shah H.N., Minnikin D.E.. ( 1980;). A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 48: 277–282 [CrossRef] [PubMed].
    [Google Scholar]
  3. Dong X.Z., Cai M.Y.. ( 2001;). Determinative Manual for Routine Bacteriology Beijing: Scientific Press; [English Translation].
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  7. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kluge A.G., Farris J.S.. ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Biol 18: 1–32 [CrossRef].
    [Google Scholar]
  9. Lau K.W.K., Ng C.Y.M., Ren J., Lau S.C.L., Qian P.Y., Wong P.K., Lau T.C., Wu M.. ( 2005;). Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’. Int J Syst Evol Microbiol 55: 1051–1057 [CrossRef] [PubMed].
    [Google Scholar]
  10. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  11. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  12. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. ., MIDI Technical Note 101 Newark, DE: MIDI Inc;.
  13. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA-base composition by reversed-phase high-performance liquid-chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  14. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  15. Thompson J.D., Higgins D.G., Gibson T.J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  16. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  17. Zhou Y., Su J., Lai Q., Li X., Yang X., Dong P., Zheng T.. ( 2013;). Phaeocystidibacter luteus gen. nov., sp. nov., a member of the family Cryomorphaceae isolated from the marine alga Phaeocystis globosa, and emended description of Owenweeksia hongkongensis. Int J Syst Evol Microbiol 63: 1143–1148 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000243
Loading
/content/journal/ijsem/10.1099/ijs.0.000243
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error