1887

Abstract

Bacterial strain THMBR28 was isolated from decomposing algal scum that was collected during an algal bloom in Taihu lake, China. Cells of strain THMBR28 were Gram-staining-positive, facultatively anaerobic and rod-shaped. Growth was observed at 20–45 °C (optimum, 30 °C), at pH 5.0–9.5 (optimum, pH 6.5–7.5), and in the presence of 0–1.0  % (w/v) NaCl (optimum, 0.5  %). Strain THMBR28 contained MK-7 as the major menaquinone and iso-C as the major cellular fatty acid. The polar lipid profile contained phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and six unidentified polar lipids. The diamino acid found in the cell-wall peptidoglycan was diaminopimelic acid. The DNA G+C content was 57.6 mol% ( ). Phylogenetic analysis of 16S rRNA gene sequences showed that strain THMBR28 belonged to the genus , most closely related to DSM 18389 (95.0  %) and Eur1 9.5 (93.4  %). Based on phylogenetic and phenotypic characterization, it is concluded that strain THMBR28 represents a novel species of the genus , for which the name sp. nov. is proposed, with THMBR28 ( = CGMCC 1.10949 = NBRC 108765) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000240
2015-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2194.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000240&mimeType=html&fmt=ahah

References

  1. Baek S.H. , Cui Y. , Kim S.C. , Cui C.H. , Yin C. , Lee S.T. , Im W.T. . ( 2011;). Tumebacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 61: 1715–1719 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barrow G.I. , Feltham R.K.A. . ( 1993;). Cowan and Steel's Manual for Identification of Medical Bacteria , 3rd edn.. Cambridge: Cambridge University Press; doi:10.1017/CBO9780511527104.[CrossRef]
    [Google Scholar]
  3. Collins M.D. . ( 1985;). Isoprenoid quinone analysis in bacterial classificaion and identification. . In Chemical Methods in Bacterial Sytematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . London: Academic Press;.
    [Google Scholar]
  4. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376.[CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  7. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  8. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  9. Lányí B. . ( 1987;). Classical and rapid identification methods for medi-cally important bacteria. Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  10. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  11. Minnikin D.E. , Odonnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  12. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  13. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. ., MIDI Technical Note 101 Newark, DE: MIDI Inc;.
  14. Schaeffer A.B. , Fulton M.D. . ( 1933;). A simplified method of staining endospores. Science 77: 194 [CrossRef] [PubMed].
    [Google Scholar]
  15. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  16. Steven B. , Chen M.Q. , Greer C.W. , Whyte L.G. , Niederberger T.D. . ( 2008;). Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost. Int J Syst Evol Microbiol 58: 1497–1501 [CrossRef] [PubMed].
    [Google Scholar]
  17. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  18. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  19. Wang Q. , Xie N. , Qin Y. , Shen N. , Zhu J. , Mi H. , Huang R. . ( 2013;). Tumebacillus flagellatus sp. nov., an α-amylase/pullulanase-producing bacterium isolated from cassava wastewater. Int J Syst Evol Microbiol 63: 3138–3142 [CrossRef] [PubMed].
    [Google Scholar]
  20. Wu Y.F. , Wu Q.L. , Liu S.J. . ( 2012;). Chryseobacterium taihuense sp. nov., isolated from aa eutrophic lake, and emended descriptions of the genus Chryseobacterium Chryseobacterium taiwanense Chryseobacterium jejuense Chryseobacterium indoltheticum . Int J Syst Evol Microbiol 63: 913–919 [CrossRef] [PubMed].
    [Google Scholar]
  21. Zhang D. , Yang H. , Zhang W. , Huang Z. , Liu S.J. . ( 2003;). Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 53: 1111–1114 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000240
Loading
/content/journal/ijsem/10.1099/ijs.0.000240
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error