1887

Abstract

A slightly yellow bacterial strain (JM-87), isolated from the stem of healthy 10 day-old sweet corn (), was studied for its taxonomic allocation. The isolate revealed Gram-stain-negative, rod-shaped cells. A comparison of the 16S rRNA gene sequence of the isolate showed 99.1, 97.8, and 97.4 % similarity to the 16S rRNA gene sequences of the type strains of , and , respectively. The fatty acid profile of strain JM-87 consisted mainly of the major fatty acids C iso, C iso 3-OH, and C iso 2-OH/Cω7/. The quinone system of strain JM-87 contained, exclusively, menaquinone MK-6. The major polyamine was -homospermidine. The polar lipid profile consisted of the major lipid phosphatidylethanolamine plus several unidentified aminolipids and other unidentified lipids. DNA–DNA hybridization experiments with CCUG 214 ( = ATCC 13253), KCTC 12492 ( = GTC 862) and R26 resulted in relatedness values of 17 % (reciprocal 16 %), 30 % (reciprocal 19 %), and 51 % (reciprocal 54 %), respectively. These DNA–DNA hybridization results, in addition to some differentiating biochemical properties, clearly indicate that strain JM-87 is a representative of a novel species, for which the name sp. nov. is proposed. The type strain is JM-87 ( = CIP 110885 = LMG 28604 = CCM 8570).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000236
2015-07-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2187.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000236&mimeType=html&fmt=ahah

References

  1. Altenburger P. , Kämpfer P. , Makristathis A. , Lubitz W. , Busse H.-J. . ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39–52 doi:10.1016/0168-1656(96)01376-4.[CrossRef]
    [Google Scholar]
  2. Bernardet J.-F. , Bruun B. , Hugo C. . ( 2006;). The genera Chryseobacterium Elizabethkingia . . In The Prokaryotes, a Handbook on the Biology of Bacteria, pp. 638–676. Edited by Dworkin M. , other editors . , 3rd edn. New York: Springer;.
    [Google Scholar]
  3. Brosius J. , Dull T.J. , Sleeter D.D. , Noller H.F. . ( 1981;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148: 107–127 doi:10.1016/0022-2836(81)90508-8 Medline.[CrossRef]
    [Google Scholar]
  4. Busse J. , Auling G. . ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11: 1–8 doi:10.1016/S0723-2020(88)80040-7.[CrossRef]
    [Google Scholar]
  5. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 doi:10.1099/00207713-47-3-698.[CrossRef]
    [Google Scholar]
  6. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 doi:10.2307/2408678.[CrossRef]
    [Google Scholar]
  7. Felsenstein J. . ( 2005;). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author Seattle: Department of Genome Sciences, University of Washington;.
    [Google Scholar]
  8. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . ( 1994;). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  9. Hamana K. , Matsuzaki S. . ( 1990;). Occurrence of homospermidine as a major polyamine in the authentic genus Flavobacterium . Can J Microbiol 36: 228–231 doi:10.1139/m90-039.[CrossRef]
    [Google Scholar]
  10. Jukes T.H. , Cantor C.R. . ( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N. . New York: Academic Press;doi:10.1016/B978-1-4832-3211-9.50009-7.[CrossRef]
    [Google Scholar]
  11. Kämpfer P. . ( 1990;). Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae . Zentralbl Bakteriol 273: 164–172 doi:10.1016/S0934-8840(11)80244-6 Medline.[CrossRef]
    [Google Scholar]
  12. Kämpfer P. , Kroppenstedt R.M. . ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 doi:10.1139/m96-128.[CrossRef]
    [Google Scholar]
  13. Kämpfer P. , Steiof M. , Dott W. . ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21: 227–251 doi:10.1007/BF02539156 Medline.[CrossRef]
    [Google Scholar]
  14. Kämpfer P. , Dreyer U. , Neef A. , Dott W. , Busse H.-J. . ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53: 93–97 doi:10.1099/ijs.0.02073-0 Medline.[CrossRef]
    [Google Scholar]
  15. Kämpfer P. , Matthews H. , Glaeser S.P. , Martin K. , Lodders N. , Faye I. . ( 2011;). Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae . Int J Syst Evol Microbiol 61: 2670–2675 doi:10.1099/ijs.0.026393-0 Medline.[CrossRef]
    [Google Scholar]
  16. Kämpfer P. , Poppel M.T. , Wilharm G. , Busse H.-J. , McInroy J.A. , Glaeser S.P. . ( 2014;). Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 64: 1419–1427 doi:10.1099/ijs.0.058933-0 Medline.[CrossRef]
    [Google Scholar]
  17. Kim K.K. , Kim M.K. , Lim J.H. , Park H.Y. , Lee S.-T. . ( 2005;). Transfer of Chryseobacterium meningosepticum Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55: 1287–1293 doi:10.1099/ijs.0.63541-0 Medline.[CrossRef]
    [Google Scholar]
  18. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 doi:10.1099/ijs.0.038075-0 Medline.[CrossRef]
    [Google Scholar]
  19. Kook M. , Son H.-M. , Ngo H.T.T. , Yi T.-H. . ( 2014;). Chryseobacterium camelliae sp. nov., isolated from green tea. Int J Syst Evol Microbiol 64: 851–857 doi:10.1099/ijs.0.057398-0 Medline.[CrossRef]
    [Google Scholar]
  20. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar Buchner,A. , Lai T. , Steppi S. , other authors . ( 2004;). ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 doi:10.1093/nar/gkh293 Medline.[CrossRef]
    [Google Scholar]
  21. Montero-Calasanz M.C. , Göker M. , Rohde M. , Spröer C. , Schumann P. , Busse H.-J. , Schmid M. , Tindall B.J. , Klenk H.-P. , Camacho M. . ( 2013;). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense Chryseobacterium gregarium . Int J Syst Evol Microbiol 63: 4386–4395 doi:10.1099/ijs.0.052456-0 Medline.[CrossRef]
    [Google Scholar]
  22. Nguyen N.-L. , Kim Y.-J. , Hoang V.A. , Yang D.-C. . ( 2013;). Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum . Int J Syst Evol Microbiol 63: 2975–2980 doi:10.1099/ijs.0.045427-0 Medline.[CrossRef]
    [Google Scholar]
  23. Pruesse E. , Peplies J. , Glöckner F.O. . ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 doi:10.1093/bioinformatics/bts252 Medline.[CrossRef]
    [Google Scholar]
  24. Reichenbach H. . ( 1992;). The order Cytophagales . . In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, pp. 3631–3675. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . , 2nd edn. New York: Springer;.
    [Google Scholar]
  25. Schumann P. . ( 2011;). Peptidoglycan structure. . In In Taxonomy of Prokaryotes, Methods in Microbiology 38, pp. 101–129. Edited by Rainey F. , Oren A. . London: Academic Press;doi:10.1016/B978-0-12-387730-7.00005-.[CrossRef]
    [Google Scholar]
  26. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  27. Stamatakis A. . ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 doi:10.1093/bioinformatics/btl446 Medline.[CrossRef]
    [Google Scholar]
  28. Stolz A. , Busse H.J. , Kämpfer P. . ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572–576 doi:10.1099/ijs.0.64761-0 Medline.[CrossRef]
    [Google Scholar]
  29. Tindall B. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 doi:10.1016/S0723-2020(11)80158-X.[CrossRef]
    [Google Scholar]
  30. Tindall B. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 doi:10.1111/j.1574-6968.1990.tb03996.x.[CrossRef]
    [Google Scholar]
  31. Vandamme P. , Bernardet J.-F. , Segers P. , Kersters K. , Holmes B. . ( 1994;). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44: 827–831 doi:10.1099/00207713-44-4-827.[CrossRef]
    [Google Scholar]
  32. Yarza P. , Richter M. , Peplies J. , Euzeby J. , Amann R. , Schleifer K.H. , Ludwig W. , Glöckner F.O. , Rosselló-Móra R. . ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 doi:10.1016/j.syapm.2008.07.001 Medline.[CrossRef]
    [Google Scholar]
  33. Ziemke F. , Höfle M.G. , Lalucat J. , Rosselló-Mora R. . ( 1998;). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48: 179–186 doi:10.1099/00207713-48-1-179 Medline.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000236
Loading
/content/journal/ijsem/10.1099/ijs.0.000236
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error