1887

Abstract

A Gram-staining-positive, white-coloured, aerobic, non-motile, catalase-positive and oxidase-negative, endophytic actinobacterium, designated strain EGI 6500322, was isolated from the surface-sterilized root of the halophyte C. A. Mey collected from Urumqi, Xinjiang province, north-west China. Growth occurred at 5–35 °C (optimum 25–30 °C), at pH 5–10 (optimum pH 7–8) and with 0–13 % NaCl (w/v) (optimum 0–5 %). The predominant menaquinone was MK-9 (93.1 %). The major cellular fatty acids were anteiso-C (49.5 %) and iso-C (15.1 %). The cell-wall peptidoglycan contained lysine, alanine and glutamic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown phospholipids and one unknown glycolipid. The DNA G+C content of strain EGI 6500322 was 62.0 mol%. Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain EGI 6500322 were identified as DSM 17432 (98.38 %) and DSM 16367 (98.37 %). The DNA–DNA relatedness between strain EGI 6500322 and DSM 17432 and DSM 16367 was 53.4 ± 4.1 % and 30.5 ± 1.7 %, respectively. On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA–DNA hybridization data, strain EGI 6500322 should represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EGI 6500322 ( = KCTC 29490 = JCM 30091).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000235
2015-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2154.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000235&mimeType=html&fmt=ahah

References

  1. Borodina E., Kelly D.P., Schumann P., Rainey F.A., Ward-Rainey N.L., Wood A.P. ( 2002;). Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov.. Arch Microbiol 177 173183. [CrossRef]
    [Google Scholar]
  2. Busse H.-J., Wieser M., Buczolits S. ( 2012;). Genus III Arthrobacter Conn & Dimmick 1947, 301AL emend. Koch, Schumann & Stackebrandt 1995, 838. . In Bergey's Manual of Systematic Bacteriology, pp. 578624 vol. 5 , 2nd edn.., Edited by Goodfellow M., Kampfer P., Busse H. -J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B., Parte A. New York: Springer Verlag;.
    [Google Scholar]
  3. Chen M., Xiao X., Wang P., Zeng X., Wang F. ( 2005;). Arthrobacter ardleyensis sp. nov., isolated from Antarctic lake sediment and deep-sea sediment. Arch Microbiol 183 301305. [CrossRef]
    [Google Scholar]
  4. Christensen H., Angen O., Mutters R., Olsen J.E., Bisgaard M. ( 2000;). DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50 10951102 [View Article] [PubMed].
    [Google Scholar]
  5. Collins M.D., Pirouz T., Goodfellow M., Minnikin D.E. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100 221230. [CrossRef]
    [Google Scholar]
  6. Collins M.D., Jones D., Kroppenstedt R.M. ( 1981;). Reclassification of Corynebacterium ilicis (Mandel, Guba and Litsky) in the genus Arthrobacter as Arthrobacter ilicis comb. nov.. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig C 2 318323.
    [Google Scholar]
  7. Collins M.D., Jones D., Kroppenstedt R.M. ( 1982;). Arthrobacter ilicis comb. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 9. Int J Syst Bacteriol 32 384385. [CrossRef]
    [Google Scholar]
  8. Conn H.J., Dimmick I. ( 1947;). Soil bacteria similar in morphology to Mycobacterium Corynebacterium . J Bacteriol 54 291303.
    [Google Scholar]
  9. Ding L., Hirose T., Yokota A. ( 2009;). Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 59 856862. [CrossRef]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39 224229. [CrossRef]
    [Google Scholar]
  11. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376. [CrossRef]
    [Google Scholar]
  12. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791. [CrossRef]
    [Google Scholar]
  13. Fitch W.M. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20 406416. [CrossRef]
    [Google Scholar]
  14. Gonzalez C., Gutierrez C., Ramirez C. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24 710715. [CrossRef]
    [Google Scholar]
  15. Irlinger F., Bimet F., Delettre J., Lefèvre M., Grimont P.A. ( 2005;). Arthrobacter bergerei sp. nov. and Arthrobacter arilaitensis sp. nov., novel coryneform species isolated from the surfaces of cheeses. Int J Syst Evol Microbiol 55 457462. [CrossRef]
    [Google Scholar]
  16. Kelly K.L. ( 1964). Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors., Washington, DC: US Government Printing Office;.
    [Google Scholar]
  17. Kim S.J., Lee S.S. ( 2011;). Amnibacterium kyonggiense gen. nov., sp. nov., a new member of the family Microbacteriaceae . Int J Syst Evol Microbiol 61 155159. [CrossRef]
    [Google Scholar]
  18. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721. [CrossRef]
    [Google Scholar]
  19. Kimura M. ( 1983). The Neutral Theory of Molecular Evolution., Cambridge: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  20. Koch C., Schumann P., Stackebrandt E. ( 1995;). Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter . Int J Syst Bacteriol 45 837839. [CrossRef]
    [Google Scholar]
  21. Komagata K., Suzuki K. ( 1987;). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19 161207. [CrossRef]
    [Google Scholar]
  22. Kroppenstedt R.M. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5 23592367. [CrossRef]
    [Google Scholar]
  23. Li W.J., Xu P., Schumann P., Zhang Y.Q., Pukall R., Xu L.H., Stackebrandt E., Jiang C.L. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 57 14241428. [CrossRef]
    [Google Scholar]
  24. Marmur J. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3 208218. [CrossRef]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39 159167. [CrossRef]
    [Google Scholar]
  26. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J.H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241. [CrossRef]
    [Google Scholar]
  27. Parte A.C. ( 2014;). LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42 (D1), D613D616. [CrossRef]
    [Google Scholar]
  28. Qin S., Wang H.B., Chen H.H., Zhang Y.Q., Jiang C.L., Xu L.H., Li W.J. ( 2008;). Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58 25252528. [CrossRef]
    [Google Scholar]
  29. Qin S., Li J., Chen H.H., Zhao G.Z., Zhu W.Y., Jiang C.L., Xu L.H., Li W.J. ( 2009;). Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75 61766186. [CrossRef]
    [Google Scholar]
  30. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425.
    [Google Scholar]
  31. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI technical note 101 Newark: MIDI Inc;.
    [Google Scholar]
  32. Shirling E.B., Gottlieb D. ( 1966;). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16 313340. [CrossRef]
    [Google Scholar]
  33. Skerman V.B.D. ( 1967). A Guide to the Identification of the Genera of Bacteria , 2nd edn.., Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739. [CrossRef]
    [Google Scholar]
  35. Tang S.K., Wang Y., Chen Y., Lou K., Cao L.L., Xu L.H., Li W.J. ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 59 20252032. [CrossRef]
    [Google Scholar]
  36. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882. [CrossRef]
    [Google Scholar]
  37. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464. [CrossRef]
    [Google Scholar]
  38. Westerberg K., Elväng A.M., Stackebrandt E., Jansson J.K. ( 2000;). Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50 20832092. [CrossRef]
    [Google Scholar]
  39. Xu P., Li W.J., Tang S.K., Zhang Y.Q., Chen G.Z., Chen H.H., Xu L.H., Jiang C.L. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55 11491153. [CrossRef]
    [Google Scholar]
  40. Zhang J., Ma Y., Yu H. ( 2012;). Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens . Int J Syst Evol Microbiol 62 27312736. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000235
Loading
/content/journal/ijsem/10.1099/ijs.0.000235
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error