1887

Abstract

A novel bacterial strain, S1-9, was isolated from a lead–zinc tailing in Nanjing, Jiangsu Province, China. Cells of strain S1-9 were Gram-stain-negative, ellipsoidal endospore-forming, aerobic rods and motile by means of peritrichous flagella. On the basis of 16S rRNA gene sequence analysis, strain S1-9 was shown to belong to the genus and the closest phylogenetic relatives were DSM 5162 (96.8 % similarity), NRRL NRS-666 (96.5 %) and MB 1871 (95.4 %). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C and iso-C. The polar lipid profile contained phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, two unknown phospholipids and two unknown lipids. The total DNA G+C content of strain S1-9 was 49.9 mol%. Based on the low levels of DNA–DNA relatedness (ranging from 21.8 to 48.4 %) to the type strains of the above species of the genus and unique phenotypic characteristics, strain S1-9 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S1-9 ( = CCTCC AB 2014290 = JCM 30613).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000232
2015-07-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2161.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000232&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F.G., Collins M.D.. ( 1993/1994;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253–260 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baik K.S., Lim C.H., Choe H.N., Kim E.M., Seong C.N.. ( 2011;). Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 61: 529–534 [CrossRef] [PubMed].
    [Google Scholar]
  3. Alexander B., Priest F.G.. ( 1989;). Bacillus glucanolyticus, a new species that degrades a variety of β-glucans. Int J Syst Bacteriol 39: 112–115 [CrossRef].
    [Google Scholar]
  4. Dahllöf I., Baillie H., Kjelleberg S.. ( 2000;). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66: 3376–3380 [CrossRef] [PubMed].
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dsouza M., Taylor M.W., Ryan J., MacKenzie A., Lagutin K., Anderson R.F., Turner S.J., Aislabie J.. ( 2014;). Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 64: 1406–1411 [CrossRef] [PubMed].
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  8. Guo X.Q., Gu J.Y., Yu Y.J., Zhang W.B., He L.Y., Sheng X.F.. ( 2014;). Paenibacillus susongensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 64: 3958–3963 [CrossRef] [PubMed].
    [Google Scholar]
  9. Heyndrickx M., Vandemeulebroecke K., Scheldeman P., Kersters K., de Vos P., Logan N.A., Aziz A.M., Ali N., Berkeley R.C.W.. ( 1996;). A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae. Int J Syst Bacteriol 46: 988–1003 [CrossRef] [PubMed].
    [Google Scholar]
  10. Jeon C.O., Lim J.M., Lee J.M., Xu L.H., Jiang C.L., Kim C.J.. ( 2005;). Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55: 1891–1896 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kishore K.H., Begum Z., Pathan A.A.K., Shivaji S.. ( 2010;). Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 60: 1909–1913 [CrossRef] [PubMed].
    [Google Scholar]
  14. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  15. Kong B.H., Liu Q.F., Liu M., Liu Y., Liu L., Li C.L., Yu R., Li Y.H.. ( 2013;). Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L.. Int J Syst Evol Microbiol 63: 1037–1044 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lane D.J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. New York: Wiley;.
    [Google Scholar]
  17. Lee J., Shin N.R., Jung M.J., Roh S.W., Kim M.S., Lee J.S., Lee K.C., Kim Y.O., Bae J.W.. ( 2013;). Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 63: 428–434 [CrossRef] [PubMed].
    [Google Scholar]
  18. Logan N.A., Berge O., Bishop A.H., Busse H.J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W.B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  20. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H.. ( 1984;). An integrated procedure for extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  21. Nakamura L.K.. ( 1984;). Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp., nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int J Syst Bacteriol 34: 224–226 [CrossRef].
    [Google Scholar]
  22. Priest F.G.. ( 2009;). Genus I. Paenibacillus Ash, Priest and Collins 1994. . In Bergey's Manual of Systematic Bacteriology, pp. 269–295. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B..vol. 3, 2nd edn.., New York: Springer;.
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc.;.
    [Google Scholar]
  25. Scheldeman P., Goossens K., Rodriguez-Diaz M., Pil A., Goris J., Herman L., De Vos P., Logan N.A., Heyndrickx M.. ( 2004;). Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54: 885–891 [CrossRef] [PubMed].
    [Google Scholar]
  26. Shida O., Takagi H., Kadowaki K., Nakamura L.K., Komagata K.. ( 1997;). Transfer of Bacillus alginolyticus Bacillus chondroitinus Bacillus curdlanolyticus Bacillus glucanolyticus Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  28. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  29. Timke M., Wang-Lieu N.Q., Altendorf K., Lipski A.. ( 2005;). Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. Appl Environ Microbiol 71: 6446–6452 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tonouchi A., Tazawa D., Fujita T.. ( 2014;). Paenibacillus shirakamiensis sp. nov., isolated from the trunk surface of a Japanese oak (Quercus crispula). Int J Syst Evol Microbiol 64: 1763–1769 [CrossRef] [PubMed].
    [Google Scholar]
  31. Valverde A., Fterich A., Mahdhi M., Ramírez-Bahena M.H., Caviedes M.A., Mars M., Velázquez E., Rodriguez-Llorente I.D.. ( 2010;). Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. Int J Syst Evol Microbiol 60: 2182–2186 [CrossRef] [PubMed].
    [Google Scholar]
  32. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  33. Zhang J., Wang Z.T., Yu H.M., Ma Y.. ( 2013;). Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 63: 1776–1781 [CrossRef] [PubMed].
    [Google Scholar]
  34. Zhou Y., Gao S., Wei D.Q., Yang L.L., Huang X., He J., Zhang Y.J., Tang S.K., Li W.J.. ( 2012;). Paenibacillus thermophilus sp. nov., a novel bacterium isolated from a sediment of hot spring in Fujian province, China. Antonie van Leeuwenhoek 102: 601–609 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000232
Loading
/content/journal/ijsem/10.1099/ijs.0.000232
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error