1887

Abstract

Five strains representing one novel anamorphic yeast species were isolated from plant leaves collected in Thailand (strains DMKU-SP186, ST-111 and ST-201) and Taiwan (strains FN20L02 and SM13L16). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, they were assigned to a single novel species of the genus . The sequences of the D1/D2 regions of the LSU rRNA genes of four of the strains (DMKU-SP186, ST-111, FN20L02 and SM13L16) were identical, while differing from strain ST-201 by 2 substitutions and 2 gaps. The nucleotide sequence of the ITS regions of the five strains differed from each other by between 0 and 3 nucleotide substitutions. The novel species was most closely related to , but showed 1.0–1.3 % nucleotide substitutions (between 6 substitutions out of 568–606 nt and 8 substitutions, and 2 gaps out of 597 nt) in the D1/D2 region of the LSU rRNA gene and 1.4–2.0 % nucleotide substitutions (6–9 substitutions out of 435 nt) in the ITS region. Ballistospores were produced by three of the strains on cornmeal agar at 15 and 20 °C after 4 weeks, while did not produce ballistospores. The name sp. nov. is proposed. The type strain is DMKU-SP186 ( = BCC 69500 = NBRC 110428 = CBS 13921).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000231
2015-07-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2135.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000231&mimeType=html&fmt=ahah

References

  1. Altschul S.F. , Madden T.L. , Schäffer A.A. , Zhang J. , Zhang Z. , Miller W. , Lipman D.J. . ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.[CrossRef]
    [Google Scholar]
  2. Boekhout T. , Bai F.Y. , Nakase T. . ( 2011;). Bullera Derx. . In The Yeasts, a Taxonomic Study , 5th edn.., pp. 1623–1659. Edited by Kurtzman C. P. , Fell J. W. , Boekhout T. . Amsterdam: Elsevier;.[CrossRef]
    [Google Scholar]
  3. Dayo-Owoyemi I. , Rodrigues A. , Landell M.F. , Valente P. , Mueller U.G. , Ramos J.P. , Pagnocca F.C. . ( 2013;). Intraspecific variation and emendation of Hannaella kunmingensis . Mycol Prog 12: 157–165.[CrossRef]
    [Google Scholar]
  4. Fell J.W. , Boekhout T. , Fonseca A. , Scorzetti G. , Statzell-Tallman A. . ( 2000;). Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50: 1351–1371.[CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.[CrossRef]
    [Google Scholar]
  6. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.[CrossRef]
    [Google Scholar]
  7. Kuraishi H. , Katayama-Fujimura Y. , Sugiyama J. , Yokoyama T. . ( 1985;). Ubiquinone systems in fungi. I. Distribution of ubiquinones in the major families of ascomycetes, basidiomycetes, and deuteromycetes, and their taxonomic implications. Trans Mycol Soc Jpn 26: 383–395.
    [Google Scholar]
  8. Kurtzman C.P. , Robnett C.J. . ( 1998;). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371.[CrossRef]
    [Google Scholar]
  9. Kurtzman C.P. , Fell J.W. , Boekhout T. , Robert V. . ( 2011;). Methods for isolation, phenotypic characterization and maintenance of yeasts. . In The Yeasts, a Taxonomic Study , 5th edn.., pp. 87–110. Edited by Kurtzman C. P. , Fell J. W. , Boekhout T. . Amsterdam: Elsevier;.[CrossRef]
    [Google Scholar]
  10. Landell M.F. , Brandão L.R. , Barbosa A.C. , Ramos J.P. , Safar S.V. , Gomes F.C. , Sousa F.M. , Morais P.B. , Broetto L. . ( 2014;). Hannaella pagnoccae sp. nov., a tremellaceous yeast species isolated from plants and soil. Int J Syst Evol Microbiol 64: 1970–1977.[CrossRef]
    [Google Scholar]
  11. Lee C.F. , Liu C.H. , Young S.S. , Chang K.S. . ( 2008;). Kazachstania jiainicus sp. nov., an ascomycetous yeast species isolated from soil in Taiwan. FEMS Yeast Res 8: 114–118.[CrossRef]
    [Google Scholar]
  12. Limtong S. , Yongmanitchai W. , Tun M.M. , Kawasaki H. , Seki T. . ( 2007;). Kazachstania siamensis sp. nov., an ascomycetous yeast species from forest soil in Thailand. Int J Syst Evol Microbiol 57: 419–422.[CrossRef]
    [Google Scholar]
  13. Molnár O. , Prillinger H. . ( 2006;). Cryptococcus zeae, a new yeast species associated with Zea mays . Microbiol Res 161: 347–354.[CrossRef]
    [Google Scholar]
  14. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  15. Scorzetti G. , Fell J.W. , Fonseca A. , Statzell-Tallman A. . ( 2002;). Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2: 495–517.[CrossRef]
    [Google Scholar]
  16. Takashima M. , Nakase T. . ( 1999;). Molecular phylogeny of the genus Cryptococcus and related species based on the sequences of 18S rDNA and internal transcribed spacer regions. Microbiol Cult Collect 15: 35–47.
    [Google Scholar]
  17. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.[CrossRef]
    [Google Scholar]
  18. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.[CrossRef]
    [Google Scholar]
  19. Wang Q.-M. , Bai F.-Y. . ( 2008;). Molecular phylogeny of basidiomycetous yeasts in the Cryptococcus luteolus lineage (Tremellales) based on nuclear rRNA and mitochondrial cytochrome b gene sequence analyses: proposal of Derxomyces gen. nov. and Hannaella gen. nov., and description of eight novel Derxomyces species. FEMS Yeast Res 8: 799–814.[CrossRef]
    [Google Scholar]
  20. White T.J. , Bruns T. , Lee S. , Taylor J.W. . ( 1990;). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. . In PCR Protocols: A Guide to Methods and Applications, pp. 315–322. Edited by Innis M. A. , Gelfand D. H. , Sninsky J. J. , White T. J. . New York: Academic Press;.
    [Google Scholar]
  21. Yamada Y. , Kondo K. . ( 1973;). Coenzyme Q system in the classification of the yeast genera Rhodotorula Cryptococcus, and the yeast-like genera Sporobolomyces Rhodosporidium . J Gen Appl Microbiol 19: 59–77.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000231
Loading
/content/journal/ijsem/10.1099/ijs.0.000231
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error