1887

Abstract

Two Gram-stain-negative, rod-shaped, orange, catalase- and oxidase-positive, non-motile bacteria, designated W13M1A and W15M10, were isolated from the marine sponges and sp., respectively, which were sampled from Lough Hyne, Co. Cork, Ireland. Analysis of the 16S rRNA gene sequences of these isolates revealed that they are members of the genus , in the family of the phylum Bacteroidetes. The type strain most closely related to strain W13M1A is DSM 18668 with a gene sequence similarity of 96.5 %. The closest related type strain to strain W15M10 is DSM 16471 with a gene sequence similarity of 98.3 %. Phylogenetic inference and phenotypic data combined indicate that the isolates represent two novel species of the genus , for which the names sp. nov. with type strain W15M10 ( = NCIMB 14725 = DSM 25233) and sp. nov. with type strain W13M1A ( = NCIMB 14724 = DSM 25230), are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000224
2015-07-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2097.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000224&mimeType=html&fmt=ahah

References

  1. Altschul S.F. , Gish W. , Miller W. , Myers E.W. , Lipman D.J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barbeyron T. , Carpentier F. , L'haridon S. , Schüler M. , Michel G. , Amann R. . ( 2008;). Description of Maribacter forsetii sp. nov. a marine Flavobacteriaceae isolated from North Sea water, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 58: 790–797 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bernardet J.F. , Nakagawa Y. , Holmes B. . ( 2002;). Subcommittee on the taxonomy of Flavobacterium Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  4. Beveridge T.J. . ( 2001;). Use of the gram stain in microbiology. Biotech Histochem 76: 111–118 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bligh E.G. , Dyer W.J. . ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cho K.H. , Hong S.G. , Cho H.H. , Lee Y.K. , Chun J. , Lee H.K. . ( 2008;). Maribacter arcticus sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 58: 1300–1303 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cowan S. , Steel K. . ( 1993;). Manual for the Identification of Medical Bacteria , 3rd edn. London: Cambridge University Press;.
    [Google Scholar]
  8. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Hu J. , Yang Q.Q. , Ren Y. , Zheng G. , Sun C. , Pan J. , Zhu X-F. , Zhang X.Q. , Wu M. . ( 2015;). Maribacter thermophilus sp. nov., isolated from an algal bloom in an intertidal zone, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 65: 36–41.[CrossRef]
    [Google Scholar]
  11. Huss V.A.R. , Festl H. , Schleifer K.H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  12. Johnson J.L. , Chilton W.S. . ( 1966;). Galactosamine glycan of Chondrococcus columnaris . Science 152: 1247–1248 [CrossRef] [PubMed].
    [Google Scholar]
  13. Jung Y.-T. , Lee J.-S. , Yoon J-H. . ( 2014;). Maribacter caenipelagi sp. nov., a member of the Flavobacteriaceae isolated from a tidal flat sediment of the Yellow Sea in Korea. Antonie van Leeuwenhoek 106: 733–742 [CrossRef] [PubMed].
    [Google Scholar]
  14. Lane D.J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acids Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . Chichester: Wiley;.
    [Google Scholar]
  15. Lo N. , Jin H.M. , Jeon C.O. . ( 2013;). Maribacter aestuarii sp. nov., isolated from tidal flat sediment, and an emended description of the genus Maribacter . Int J Syst Evol Microbiol 63: 3409–3414 [CrossRef] [PubMed].
    [Google Scholar]
  16. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  17. Montero-Calasanz M.C. , Göker M. , Rohde M. , Spröer C. , Schumann P. , Busse H.J. , Schmid M. , Tindall B.J. , Klenk H.P. , Camacho M. . ( 2013;). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii Chryseobacterium indologenes Chryseobacterium wanjuense Chryseobacterium gregarium . Int J Syst Evol Microbiol 63: 4386–4395 [CrossRef] [PubMed].
    [Google Scholar]
  18. Nedashkovskaya O.I. , Kim S.B. , Han S.K. , Lysenko A.M. , Rohde M. , Rhee M.S. , Frolova G.M. , Falsen E. , Mikhailov V.V. , Bae K.S. . ( 2004;). Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Evol Microbiol 54: 1017–1023 [CrossRef] [PubMed].
    [Google Scholar]
  19. Nedashkovskaya O.I. , Vancanneyt M. , De Vos P. , Kim S.B. , Lee M.S. , Mikhailov V.V. . ( 2007;). Maribacter polysiphoniae sp. nov., isolated from a red alga. Int J Syst Evol Microbiol 57: 2840–2843 [CrossRef] [PubMed].
    [Google Scholar]
  20. Nedashkovskaya O.I. , Kim S.B. , Mikhailov V.V. . ( 2010;). Maribacter stanieri sp. nov., a marine bacterium of the family Flavobacteriaceae . Int J Syst Evol Microbiol 60: 214–218 [CrossRef] [PubMed].
    [Google Scholar]
  21. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  22. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;.
  23. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  24. Tamura K. , Nei M. , Kumar S. . ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101: 11030–11035 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maxi mum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  26. Thompson J.D. , Higgins D.G. , Gibson T.J. . ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tindall B.J. . ( 1990a;). A comparative study of the lipid-composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  28. Tindall B.J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  29. Tindall B.J. , Sikorski J. , Smibert R.M. , Kreig N.R. . ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  30. Visuvanathan S. , Moss M.T. , Stanford J.L. , Hermon-Taylor J. , Mcfadden J.J. . ( 1989;). Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10: 59–64 [CrossRef].
    [Google Scholar]
  31. Wang Q. , Garrity G.M. , Tiedje J.M. , Cole J.R. . ( 2007;). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267 [CrossRef] [PubMed].
    [Google Scholar]
  32. Weerawongwiwat V. , Kang H. , Jung M.Y. , Kim W. . ( 2013;). Maribacter chungangensis sp. nov., isolated from a green seaweed, and emended descriptions of the genus Maribacter Maribacter arcticus . Int J Syst Evol Microbiol 63: 2553–2558 [CrossRef] [PubMed].
    [Google Scholar]
  33. Yoon J.H. , Kang S-J. , Lee S-Y. , Lee C-H. , Oh T-K. . ( 2005;). Maribacter dokdonensis sp. nov., isolated from sea water off a Korean island, Dokdo. Int J Syst Evol Microbiol 55: 2051–2055 [CrossRef] [PubMed].
    [Google Scholar]
  34. Zhang G.I. , Hwang C.Y. , Kang S.H. , Cho B.C. . ( 2009;). Maribacter antarcticus sp. nov., a psychrophilic bacterium isolated from a culture of the Antarctic green alga Pyramimonas gelidicola . Int J Syst Evol Microbiol 59: 1455–1459 [CrossRef] [PubMed].
    [Google Scholar]
  35. ZoBell C.E. . ( 1941;). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4: 42–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000224
Loading
/content/journal/ijsem/10.1099/ijs.0.000224
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error