1887

Abstract

A Gram-stain-positive, facultatively anaerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated BS-12M, was isolated from a tidal flat sediment on the South Sea, South Korea. Strain BS-12M grew optimally at 35 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain BS-12M fell within the cluster comprising the type strains of species of the genus , joining the type strain of with which it shared the highest sequence similarity (98.6 %). It exhibited 16S rRNA gene sequence similarity of 96.1–97.9 % to the type strains of other species of the genus . The peptidoglycan type of strain BS-12M was A4β based on -Orn − -Ser − -Glu. Strain BS-12M contained demethylmenaquinone-9(H) as the major menaquinone and anteiso-C and C as the major fatty acids. The major polar lipids of strain BS-12M were phosphatidylinositol and phosphatidylinositolmannoside. The DNA G+C content of strain BS-12M was 70.7 mol% and its DNA–DNA relatedness values with the type strains of five phylogenetically related species of the genus were 15–34 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain BS-12M is separate from other species of the genus . On the basis of the data presented, strain BS-12M is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BS-12M ( = KCTC 29674 = NBRC 110675).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000217
2015-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2042.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000217&mimeType=html&fmt=ahah

References

  1. Barrow G.I., Feltham R.K.A. (editors) ( 1993). Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press; [View Article].
    [Google Scholar]
  2. Baumann P., Baumann L. ( 1981;). The marine Gram-negative eubacteria: genera Photobacterium Beneckea Alteromonas Pseudomonas, and Alcaligenes . . In The Prokaryotes, pp. 13021331. Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer;.
    [Google Scholar]
  3. Bruns A., Rohde M., Berthe-Corti L. ( 2001;). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51 19972006 [View Article] [PubMed] .
    [Google Scholar]
  4. Cohen-Bazire G., Sistrom W.R., Stanier R.Y. ( 1957;). Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol 49 2568 [View Article] [PubMed] .
    [Google Scholar]
  5. Embley T.M., Wait R. ( 1994;). Structural lipids of eubacteria. . In Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics, pp. 121161. Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;.
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39 224229 [View Article].
    [Google Scholar]
  7. Finster K.W., Herbert R.A., Kjeldsen K.U., Schumann P., Lomstein B.A. ( 2009;). Demequina lutea sp. nov., isolated from a high Arctic permafrost soil. Int J Syst Evol Microbiol 59 649653 [View Article] [PubMed] .
    [Google Scholar]
  8. Hamada M., Tamura T., Yamamura H., Suzuki K., Hayakawa M. ( 2013;). Demequina flava sp. nov. and Demequina sediminicola sp. nov., isolated from sea sediment. Int J Syst Evol Microbiol 63 249253 [View Article] [PubMed].
    [Google Scholar]
  9. Komagata K., Suzuki K.-I. ( 1987;). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19 161207 [View Article].
    [Google Scholar]
  10. Lányí B. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19 167 [View Article].
    [Google Scholar]
  11. Matsumoto A., Nakai K., Morisaki K., O¯mura S., Takahashi Y. ( 2010;). Demequina salsinemoris sp. nov., isolated on agar media supplemented with ascorbic acid or rutin. Int J Syst Evol Microbiol 60 12061209 [View Article] [PubMed].
    [Google Scholar]
  12. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241 [View Article].
    [Google Scholar]
  13. Park S., Park D.-S., Bae K.S., Yoon J.-H. ( 2014;). Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 64 13781383 [View Article] [PubMed].
    [Google Scholar]
  14. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  15. Schleifer K.H., Kandler O. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36 407477 [PubMed].
    [Google Scholar]
  16. Stackebrandt E., Goebel B.M. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44 846849 [View Article].
    [Google Scholar]
  17. Staley J.T. ( 1968;). Prosthecomicrobium Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95 19211942 [PubMed].
    [Google Scholar]
  18. Tamaoka J., Komagata K. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25 125128 [View Article].
    [Google Scholar]
  19. Ue H., Matsuo Y., Kasai H., Yokota A. ( 2011;). Demequina globuliformis sp. nov., Demequina oxidasica sp. nov. and Demequina aurantiaca sp. nov., actinobacteria isolated from marine environments, and proposal of Demequinaceae fam. nov. Int J Syst Evol Microbiol 61 13221329 [View Article] [PubMed].
    [Google Scholar]
  20. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [View Article].
    [Google Scholar]
  21. Yi H., Schumann P., Chun J. ( 2007;). Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara et al. 1985 as Actinotalea fermentans gen. nov., comb. nov. Int J Syst Evol Microbiol 57 151156 [View Article] [PubMed].
    [Google Scholar]
  22. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W.Y., Lee S.T., Goodfellow M., Park Y.-H. ( 1996;). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46 502505 [View Article].
    [Google Scholar]
  23. Yoon J.-H., Lee S.T., Park Y.-H. ( 1998;). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48 187194 [View Article] [PubMed].
    [Google Scholar]
  24. Yoon J.-H., Kim I.-G., Shin D.-Y., Kang K.H., Park Y.-H. ( 2003;). Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53 5357 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000217
Loading
/content/journal/ijsem/10.1099/ijs.0.000217
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error