1887

Abstract

A novel, strictly anaerobic, hydrogenotrophic methanogen, strain E09F.3, was isolated from a commercial biogas plant in Germany. Cells of E09F.3 were Gram-stain-negative, non-motile, slightly curved rods, long chains of which formed large aggregates consisting of intertwined bundles of chains. Cells utilized H+CO and, to a lesser extent, formate as substrates for growth and methanogenesis. The optimal growth temperature was around 40 °C; maximum growth rate was obtained at pH around 7.0 with approximately 6.8 mM NaCl. The DNA G+C content of strain E09F.3 was 39.1 mol%. Phylogenetic analyses based on 16S rRNA and gene sequences placed strain E09F.3 within the genus . On the basis of 16S rRNA gene sequence similarity, strain E09F.3 was closely related to C but morphological, physiological and genomic characteristics indicated that strain E09F.3 represents a novel species. The name sp. nov. is proposed for this novel species, with strain E09F.3 ( = DSM 29428 = JCM 30569) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000210
2015-06-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1975.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000210&mimeType=html&fmt=ahah

References

  1. Balch W.E. , Wolfe R.S. . ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32: 781–791 [PubMed].
    [Google Scholar]
  2. Blotevogel K.-H. , Fischer U. . ( 1985;). Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans spec. nov. Arch Microbiol 142: 218–222 10.1007/BF00693393 .[CrossRef]
    [Google Scholar]
  3. Boone D.R. . ( 2001;). Genus I. Methanobacterium . . In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 215–218. Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . New York: Springer; 10.1007/978-0-387-21609-6 .
    [Google Scholar]
  4. Boone D.R. , Whitman W.B. . ( 1988;). Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38: 212–219 doi:10.1099/00207713-38-2-212 .[CrossRef]
    [Google Scholar]
  5. Borrel G. , Joblin K. , Guedon A. , Colombet J. , Tardy V. , Lehours A.C. , Fonty G. . ( 2012;). Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int J Syst Evol Microbiol 62: 1625–1629 10.1099/ijs.0.034538-0 [PubMed].[CrossRef]
    [Google Scholar]
  6. Bryant M.P. , Tzeng S.F. , Robinson I.M. , Joyner A.E. Jr . ( 1971;). Nutrient requirements of methanogenic bacteria. Adv Chem Ser 105: 23–40.[CrossRef]
    [Google Scholar]
  7. Bryant M.P. , Boone D.R. . ( 1987;). Isolation and characterization of Methanobacterium formicicum MF. Int J Syst Bacteriol 37: 171.[CrossRef]
    [Google Scholar]
  8. Cadillo-Quiroz H. , Bräuer S.L. , Goodson N. , Yavitt J.B. , Zinder S.H. . ( 2014;). Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands. Int J Syst Evol Microbiol 64: 1473–1480 10.1099/ijs.0.059964-0 [PubMed].[CrossRef]
    [Google Scholar]
  9. Cuzin N. , Ouattara A.S. , Labat M. , Garcia J.L. . ( 2001;). Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51: 489–493 [PubMed].
    [Google Scholar]
  10. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 10.1111/j.1432-1033.1970.tb00830.x [PubMed].[CrossRef]
    [Google Scholar]
  11. DeLong E.F. . ( 1992;). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89: 5685–5689 10.1073/pnas.89.12.5685 [PubMed].[CrossRef]
    [Google Scholar]
  12. Doddema H.J. , Vogels G.D. . ( 1978;). Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36: 752–754 [PubMed].
    [Google Scholar]
  13. Gerhardt P. , Murray R.G.E. , Wood W.A. , Krieg N.R.(editors) . ( 1994;). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  14. Godsy E.M. . ( 1980;). Isolation of Methanobacterium bryantii from a deep aquifer by using a novel broth-antibiotic disk method. Appl Environ Microbiol 39: 1074–1075 [PubMed].
    [Google Scholar]
  15. Huß V.A.R. , Festl H. , Schleifer K.H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 10.1016/S0723-2020(83)80048-4 [PubMed].[CrossRef]
    [Google Scholar]
  16. Joulian C. , Patel B.K. , Ollivier B. , Garcia J.L. , Roger P.A. . ( 2000;). Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int J Syst Evol Microbiol 50: 525–528 10.1099/00207713-50-2-525 [PubMed].[CrossRef]
    [Google Scholar]
  17. Klocke M. , Mähnert P. , Mundt K. , Souidi K. , Linke B. . ( 2007;). Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 30: 139–151 10.1016/j.syapm.2006.03.007 [PubMed].[CrossRef]
    [Google Scholar]
  18. Krakat N. , Schmidt S. , Scherer P. . ( 2010;). Mesophilic fermentation of renewable biomass: does hydraulic retention time regulate methanogen diversity?. Appl Environ Microbiol 76: 6322–6326 10.1128/AEM.00927-10 [PubMed].[CrossRef]
    [Google Scholar]
  19. Leclerc M. , Delgènes J.P. , Godon J.J. . ( 2004;). Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6: 809–819 10.1111/j.1462-2920.2004.00616.x [PubMed].[CrossRef]
    [Google Scholar]
  20. Luton P.E. , Wayne J.M. , Sharp R.J. , Riley P.W. . ( 2002;). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148: 3521–3530 [PubMed].
    [Google Scholar]
  21. Ma K. , Liu X. , Dong X. . ( 2005;). Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int J Syst Evol Microbiol 55: 325–329 10.1099/ijs.0.63254-0 [PubMed].[CrossRef]
    [Google Scholar]
  22. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 doi:10.1099/00207713-39-2-159 .[CrossRef]
    [Google Scholar]
  23. Nölling J. , Elfner A. , Palmer J.R. , Steigerwald V.J. , Pihl T.D. , Lake J.A. , Reeve J.N. . ( 1996;). Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol 46: 1170–1173 10.1099/00207713-46-4-1170 [PubMed].[CrossRef]
    [Google Scholar]
  24. Schirmack J. , Mangelsdorf K. , Ganzert L. , Sand W. , Hillebrand-Voiculescu A. , Wagner D. . ( 2014;). Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int J Syst Evol Microbiol 64: 522–527 10.1099/ijs.0.057224-0 [PubMed].[CrossRef]
    [Google Scholar]
  25. Shcherbakova V. , Rivkina E. , Pecheritsyna S. , Laurinavichius K. , Suzina N. , Gilichinsky D. . ( 2011;). Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61: 144–147 10.1099/ijs.0.021311-0 [PubMed].[CrossRef]
    [Google Scholar]
  26. Simankova M.V. , Kotsyurbenko O.R. , Lueders T. , Nozhevnikova A.N. , Wagner B. , Conrad R. , Friedrich M.W. . ( 2003;). Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26: 312–318 10.1078/072320203322346173 [PubMed].[CrossRef]
    [Google Scholar]
  27. Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
    [Google Scholar]
  28. Stantscheff R. , Kuever J. , Rabenstein A. , Seyfarth K. , Dröge S. , König H. . ( 2014;). Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium . Appl Microbiol Biotechnol 98: 5719–5735 10.1007/s00253-014-5652-4 [PubMed].[CrossRef]
    [Google Scholar]
  29. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 doi:10.1111/j.1574-6968.1984.tb01388.x .[CrossRef]
    [Google Scholar]
  30. Wasserfallen A. , Nölling J. , Pfister P. , Reeve J. , Conway de Macario E. . ( 2000;). Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50: 43–53 10.1099/00207713-50-1-43 [PubMed].[CrossRef]
    [Google Scholar]
  31. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 doi:10.1099/00207713-37-4-463 .[CrossRef]
    [Google Scholar]
  32. Weisburg W.G. , Barns S.M. , Pelletier D.A. , Lane D.J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  33. Whitman W.B. , Bowen T.L. , Boone D.R. . ( 2006;). The methanogenic bacteria. . In The Prokaryotes, 3rd edn, vol. 3, pp. 165–207. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K.-H. , Stackebrandt E. . New York: Springer; doi:10.1007/0-387-30743-5_9 .[CrossRef]
    [Google Scholar]
  34. Wolin E.A. , Wolin M.J. , Wolfe R.S. . ( 1963;). Formation of methane by bacterial extracts. J Biol Chem 238: 2882–2886 [PubMed].
    [Google Scholar]
  35. Zhang C. , Yuan Q. , Lu Y. . ( 2014;). Inhibitory effects of ammonia on methanogen mcrA transcripts in anaerobic digester sludge. FEMS Microbiol Ecol 87: 368–377 10.1111/1574-6941.12229 [PubMed].[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000210
Loading
/content/journal/ijsem/10.1099/ijs.0.000210
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error