1887

Abstract

A Gram-staining-negative, strictly aerobic bacterial strain, designated SM-6, was isolated from a sea tidal flat of the Dangjin bay, South Korea. Strain SM-6 was able to degrade a broad range of aliphatic hydrocarbons. Cells were catalase- and oxidase-positive and non-motile rods. Growth of strain SM-6 was observed at 10–37 °C (optimum, 20–25 °C), at pH 5.5–9.0 (optimum, pH 6.5–7.5) and in the presence of 0–10 % (w/v) NaCl (optimum, 2–3 %). The only isoprenoid quinone detected was ubiquinone-8 (Q-8). C ω8, C 3-OH, summed feature 3 (comprising C ω7 and/or C ω6), C 3-OH and C 3-OH were observed as the major cellular fatty acids and phosphatidylethanolamine, phosphatidylglycerol and four unidentified lipids were detected as polar lipids. The G+C content of the genomic DNA was 47.5 mol%. Strain SM-6 was most closely related to KU41G (95.5 %), KU41E (94.4 %) and SW-11 (94.3 %), based on 16S rRNA gene sequences, and phylogenetic analyses showed that strain SM-6 formed a phyletic lineage distinct from the closely related genera. On the basis of phenotypic, chemotaxonomic and molecular features, strain SM-6 represents a novel genus and species of the order in the class , for which name gen. nov., sp. nov. is proposed. The type strain is SM-6 ( = KACC 18121 = JCM 30134).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000199
2015-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1935.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000199&mimeType=html&fmt=ahah

References

  1. Bernardet J.F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070.[CrossRef]
    [Google Scholar]
  2. Bowman J.P. . ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868.
    [Google Scholar]
  3. Chen M.H. , Sheu S.Y. , Arun A.B. , Young C.C. , Chen C.A. , Wang J.T. , Chen W.M. . ( 2011;). Pseudoteredinibacter isoporae gen. nov., sp. nov., a marine bacterium isolated from the reef-building coral Isopora palifera . Int J Syst Evol Microbiol 61: 1887–1893.[CrossRef]
    [Google Scholar]
  4. Dyksterhouse S.E. , Gray J.P. , Herwig R.P. , Lara J.C. , Staley J.T. . ( 1995;). Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45: 116–123.[CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 2002;). phylip (phylogeny inference package), version 3.6a., Seattle: Department of Genome Sciences, University of Washington, Seattle, WA, USA;.
    [Google Scholar]
  6. Gomori G. . ( 1955;). Preparation of buffers for use in enzyme studies. . In Methods in Enzymology vol. 1, pp. 138–146. Edited by Colowick S. P. , Kaplan N. O. . New York: Academic Press;.[CrossRef]
    [Google Scholar]
  7. Gonzalez J.M. , Saiz-Jimenez C. . ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773.[CrossRef]
    [Google Scholar]
  8. Iwaki H. , Takada K. , Hasegawa Y. . ( 2012;). Maricurvus nonylphenolicus gen. nov., sp. nov., a nonylphenol-degrading bacterium isolated from seawater. FEMS Microbiol Lett 327: 142–147.[CrossRef]
    [Google Scholar]
  9. Iwaki H. , Fujioka M. , Hasegawa Y. . ( 2014;). Isolation and characterization of marine nonylphenol-degrading bacteria and description of Pseudomaricurvus alkylphenolicus gen. nov., sp. nov. Curr Microbiol 68: 167–173.[CrossRef]
    [Google Scholar]
  10. Jin H.M. , Kim J.M. , Lee H.J. , Madsen E.L. , Jeon C.O. . ( 2012;). Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ Sci Technol 46: 7731–7740.[CrossRef]
    [Google Scholar]
  11. Jin H.M. , Choi E.J. , Jeon C.O. . ( 2013;). Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresour Technol 145: 57–64 10.1016/j.biortech.2013.02.004 [PubMed].[CrossRef]
    [Google Scholar]
  12. Jung J.Y. , Kim J.M. , Jin H.M. , Kim S.Y. , Park W. , Jeon C.O. . ( 2011;). Litorimonas taeanensis gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 61: 1534–1538.[CrossRef]
    [Google Scholar]
  13. Kim M. , Yim U.H. , Hong S.H. , Jung J.H. , Choi H.W. , An J. , Won J. , Shim W.J. . ( 2010;). Hebei Spirit oil spill monitored on site by fluorometric detection of residual oil in coastal waters off Taean, Korea. Mar Pollut Bull 60: 383–389.[CrossRef]
    [Google Scholar]
  14. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721.[CrossRef]
    [Google Scholar]
  15. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  16. Lányí B. . ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  17. Leifson E. . ( 1963;). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85: 1183–1184.
    [Google Scholar]
  18. Lo N. , Kang H.J. , Jeon C.O. . ( 2014;). Zhongshania aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium isolated from marine sediment, and transfer of Spongiibacter borealis Jang et al. 2011 to the genus Zhongshania as Zhongshania borealis comb. nov. Int J Syst Evol Microbiol 64: 3768–3774.[CrossRef]
    [Google Scholar]
  19. Math R.K. , Jin H.M. , Kim J.M. , Hahn Y. , Park W. , Madsen E.L. , Jeon C.O. . ( 2012;). Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 7: e35784.[CrossRef]
    [Google Scholar]
  20. Minnikin D.E. , Patel P.V. , Alshamaony L. , Goodfellow M. . ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117.[CrossRef]
    [Google Scholar]
  21. Nawrocki E.P. , Eddy S.R. . ( 2007;). Query-dependent banding (QDB) for faster RNA similarity searches. PLOS Comput Biol 3: e56.[CrossRef]
    [Google Scholar]
  22. Rojo F. . ( 2009;). Degradation of alkanes by bacteria. Environ Microbiol 11: 2477–2490.[CrossRef]
    [Google Scholar]
  23. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;.
  24. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  25. Stamatakis A. , Ott M. , Ludwig T. . ( 2005;). RAxML-OMP: an efficient program for phylogenetic inference on SMPs. . In Proceedings of 8th International Conference on Parallel Computing Technologies (PaCT2005), Lecture Notes in Computer Science 3606, pp. 288–302 Berlin: Springer;.
    [Google Scholar]
  26. Wang L. , Wang W. , Lai Q. , Shao Z. . ( 2010;). Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12: 1230–1242.[CrossRef]
    [Google Scholar]
  27. Yurkov V. , Stackebrandt E. , Holmes A. , Fuerst J.A. , Hugenholtz P. , Golecki J. , Gad'on N. , Gorlenko V.M. , Kompantseva E.I. , Drews G. . ( 1994;). Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44: 427–434.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000199
Loading
/content/journal/ijsem/10.1099/ijs.0.000199
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error