1887

Abstract

A Gram-stain-positive, endospore-forming, moderately halophilic bacterial strain, NEAU-ST10-40, was isolated from a saline and alkaline soil in Anda City, China. It was strictly aerobic, rod-shaped and motile by peritrichous flagella. It formed light yellow colonies and grew at NaCl concentrations of 3–15 % (w/v) (optimum, 8 %, w/v), at pH 7.0–9.0 (optimum, pH 8.0) and at 4–60 °C (optimum, 30 °C). It contained -diaminopimelic acid in the cell-wall peptidoglycan. Phylogenetic analysis based on 16S rRNA gene sequences indicated that it belonged to the genus . Levels of 16S rRNA gene sequence similarity between strain NEAU-ST10-40 and the type strains of related species of the genus ranged from 98.8 % ( FP5) to 97.1 % ( IS-Hb7). DNA–DNA hybridization relatedness values between strain NEAU-ST10-40 and DSM 18525, KCTC 13144, DSM 17110, DSM 2266, DSM 10405, DSM 18199, DSM 18897, DSM 21183, DSM 10404 and DSM 21185 were from 43 ± 1 to 19 ± 1 % (mean ± ). The DNA G+C content was 39.3 mol%. The major fatty acids (>10 %) were anteiso-C, anteiso-C and iso-C, the only respiratory quinone detected was MK-7, and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unknown phospholipids and three unknown lipids. On the basis of the data presented, strain NEAU-ST10-40 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is NEAU-ST10-40 ( = CGMCC 1.12153 = DSM 25866).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000198
2015-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1908.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000198&mimeType=html&fmt=ahah

References

  1. Amoozegar M.A. , Malekzadeh F. , Malik K.A. , Schumann P. , Spröer C. . ( 2003;). Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53: 1059–1063.[CrossRef]
    [Google Scholar]
  2. An S.-Y. , Kanoh K. , Kasai H. , Goto K. , Yokota A. . ( 2007;). Halobacillus faecis sp. nov., a spore-forming bacterium isolated from a mangrove area on Ishigaki Island, Japan. Int J Syst Evol Microbiol 57: 2476–2479.[CrossRef]
    [Google Scholar]
  3. Chen Y.G. , Liu Z.X. , Zhang Y.Q. , Zhang Y.X. , Tang S.K. , Borrathybay E. , Li W.J. , Cui X.L. . ( 2009a;). Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 96: 99–107.[CrossRef]
    [Google Scholar]
  4. Chen Y.G. , Zhang Y.Q. , Liu Z.X. , Zhuang D.C. , Klenk H.P. , Tang S.K. , Cui X.L. , Li W.J. . ( 2009b;). Halobacillus salsuginis sp. nov., a moderately halophilic bacterium from a subterranean brine. Int J Syst Evol Microbiol 59: 2505–2509.[CrossRef]
    [Google Scholar]
  5. Claus D. , Fahmy F. , Rolf H.J. , Tosunoglu N. . ( 1983;). Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4: 496–506.[CrossRef]
    [Google Scholar]
  6. Cowan S.T. , Steel K.J. . ( 1965;). Manual for the Identification of Medical Bacteria., London: Cambridge University Press;.
    [Google Scholar]
  7. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142.[CrossRef]
    [Google Scholar]
  8. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376.[CrossRef]
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.[CrossRef]
    [Google Scholar]
  10. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29: 319–322.[CrossRef]
    [Google Scholar]
  11. Hua N.-P. , Kanekiyo A. , Fujikura K. , Yasuda H. , Naganuma T. . ( 2007;). Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Microbiol 57: 1243–1249.[CrossRef]
    [Google Scholar]
  12. Huss V.A.R. , Festl H. , Schleifer K.H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192.[CrossRef]
    [Google Scholar]
  13. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721.[CrossRef]
    [Google Scholar]
  14. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.[CrossRef]
    [Google Scholar]
  15. Kluge A.G. , Farris F.S. . ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32.[CrossRef]
    [Google Scholar]
  16. Kuykendall L.D. , Roy M.A. , O'Neill J.J. , Devine T.E. . ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38: 358–361.[CrossRef]
    [Google Scholar]
  17. Lee J.S. , Shin Y.K. , Yoon J.H. , Takeuchi M. , Pyun Y.R. , Park Y.H. . ( 2001;). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51: 1491–1498.
    [Google Scholar]
  18. Liu W.Y. , Zeng J. , Wang L. , Dou Y.T. , Yang S.S. . ( 2005;). Halobacillus dabanensis sp. nov. and Halobacillus aidingensis sp. nov., isolated from salt lakes in Xinjiang, China. Int J Syst Evol Microbiol 55: 1991–1996.[CrossRef]
    [Google Scholar]
  19. Logan N.A. , Berge O. , Bishop A.H. , Busse H.J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. , other authors . ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121.[CrossRef]
    [Google Scholar]
  20. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218.[CrossRef]
    [Google Scholar]
  21. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118.[CrossRef]
    [Google Scholar]
  22. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241.[CrossRef]
    [Google Scholar]
  23. Pan Y. , Huang H. , Meng J. , Xiao H. , Li C. , Meng L. , Hong S. , Liu H. , Wang X. , Jiang J. . ( 2012;). [Biodiversity of the culturable halotolerant and halophilic bacteria isolated from saline-alkaline soils in Songnen Plain]. Acta Microbiol Sin 52: 1187–1194.
    [Google Scholar]
  24. Parte A.C. . ( 2014;). LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42: (D1), D613–D616.[CrossRef]
    [Google Scholar]
  25. Romano I. , Finore I. , Nicolaus G. , Huertas F.J. , Lama L. , Nicolaus B. , Poli A. . ( 2008;). Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain. Int J Syst Evol Microbio 58: 886–890.[CrossRef]
    [Google Scholar]
  26. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  27. Sehgal S.N. , Gibbons N.E. . ( 1960;). Effect of some metal ions on the growth of Halobacterium cutirubrum . Can J Microbiol 6: 165–169.[CrossRef]
    [Google Scholar]
  28. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  29. Soto-Ramírez N. , Sánchez-Porro C. , Rosas-Padilla S. , Almodóvar K. , Jiménez G. , Machado-Rodríguez M. , Zapata M. , Ventosa A. , Montalvo-Rodríguez R. . ( 2008;). Halobacillus mangrovi sp. nov., a moderately halophilic bacterium isolated from the black mangrove Avicennia germinans . Int J Syst Evol Microbiol 58: 125–130.[CrossRef]
    [Google Scholar]
  30. Spring S. , Ludwig W. , Marquez M.C. , Ventosa A. , Schleifer K.-H. . ( 1996;). Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46: 492–496.[CrossRef]
    [Google Scholar]
  31. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.[CrossRef]
    [Google Scholar]
  32. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.[CrossRef]
    [Google Scholar]
  33. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  34. Xu X.W. , Wu Y.H. , Zhou Z. , Wang C.S. , Zhou Y.G. , Zhang H.B. , Wang Y. , Wu M. . ( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57: 1619–1624.[CrossRef]
    [Google Scholar]
  35. Yoon J.-H. , Kang K.H. , Park Y.-H. . ( 2003;). Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int J Syst Evol Microbiol 53: 687–693.[CrossRef]
    [Google Scholar]
  36. Yoon J.-H. , Kang K.H. , Oh T.-K. , Park Y.-H. . ( 2004;). Halobacillus locisalis sp. nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles 8: 23–28.[CrossRef]
    [Google Scholar]
  37. Yoon J.-H. , Kang S.-J. , Lee C.-H. , Oh H.W. , Oh T.-K. . ( 2005;). Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 55: 2413–2417.[CrossRef]
    [Google Scholar]
  38. Yoon J.-H. , Kang S.-J. , Jung Y.-T. , Oh T.-K. . ( 2007;). Halobacillus campisalis sp. nov., containing meso-diaminopimelic acid in the cell-wall peptidoglycan, and emended description of the genus Halobacillus . Int J Syst Evol Microbiol 57: 2021–2025.[CrossRef]
    [Google Scholar]
  39. Yoon J.-H. , Kang S.-J. , Oh T.-K. . ( 2008;). Halobacillus seohaensis sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 58: 622–627.[CrossRef]
    [Google Scholar]
  40. Zhou Y. , Dong J. , Wang X. , Huang X. , Zhang K.Y. , Zhang Y.Q. , Guo Y.F. , Lai R. , Li W.J. . ( 2007;). Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 57: 1765–1769.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000198
Loading
/content/journal/ijsem/10.1099/ijs.0.000198
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error