1887

Abstract

A Gram-stain-positive, endospore-forming, moderately halophilic bacterial strain, NEAU-ST10-40, was isolated from a saline and alkaline soil in Anda City, China. It was strictly aerobic, rod-shaped and motile by peritrichous flagella. It formed light yellow colonies and grew at NaCl concentrations of 3–15 % (w/v) (optimum, 8 %, w/v), at pH 7.0–9.0 (optimum, pH 8.0) and at 4–60 °C (optimum, 30 °C). It contained -diaminopimelic acid in the cell-wall peptidoglycan. Phylogenetic analysis based on 16S rRNA gene sequences indicated that it belonged to the genus . Levels of 16S rRNA gene sequence similarity between strain NEAU-ST10-40 and the type strains of related species of the genus ranged from 98.8 % ( FP5) to 97.1 % ( IS-Hb7). DNA–DNA hybridization relatedness values between strain NEAU-ST10-40 and DSM 18525, KCTC 13144, DSM 17110, DSM 2266, DSM 10405, DSM 18199, DSM 18897, DSM 21183, DSM 10404 and DSM 21185 were from 43 ± 1 to 19 ± 1 % (mean ± ). The DNA G+C content was 39.3 mol%. The major fatty acids (>10 %) were anteiso-C, anteiso-C and iso-C, the only respiratory quinone detected was MK-7, and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unknown phospholipids and three unknown lipids. On the basis of the data presented, strain NEAU-ST10-40 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is NEAU-ST10-40 ( = CGMCC 1.12153 = DSM 25866).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000198
2015-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1908.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000198&mimeType=html&fmt=ahah

References

  1. Amoozegar M.A., Malekzadeh F., Malik K.A., Schumann P., Spröer C. ( 2003;). Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53 10591063. [CrossRef]
    [Google Scholar]
  2. An S.-Y., Kanoh K., Kasai H., Goto K., Yokota A. ( 2007;). Halobacillus faecis sp. nov., a spore-forming bacterium isolated from a mangrove area on Ishigaki Island, Japan. Int J Syst Evol Microbiol 57 24762479. [CrossRef]
    [Google Scholar]
  3. Chen Y.G., Liu Z.X., Zhang Y.Q., Zhang Y.X., Tang S.K., Borrathybay E., Li W.J., Cui X.L. ( 2009a;). Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 96 99107. [CrossRef]
    [Google Scholar]
  4. Chen Y.G., Zhang Y.Q., Liu Z.X., Zhuang D.C., Klenk H.P., Tang S.K., Cui X.L., Li W.J. ( 2009b;). Halobacillus salsuginis sp. nov., a moderately halophilic bacterium from a subterranean brine. Int J Syst Evol Microbiol 59 25052509. [CrossRef]
    [Google Scholar]
  5. Claus D., Fahmy F., Rolf H.J., Tosunoglu N. ( 1983;). Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4 496506. [CrossRef]
    [Google Scholar]
  6. Cowan S.T., Steel K.J. ( 1965). Manual for the Identification of Medical Bacteria., London: Cambridge University Press;.
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12 133142. [CrossRef]
    [Google Scholar]
  8. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376. [CrossRef]
    [Google Scholar]
  9. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791. [CrossRef]
    [Google Scholar]
  10. Hasegawa T., Takizawa M., Tanida S. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29 319322. [CrossRef]
    [Google Scholar]
  11. Hua N.-P., Kanekiyo A., Fujikura K., Yasuda H., Naganuma T. ( 2007;). Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Microbiol 57 12431249. [CrossRef]
    [Google Scholar]
  12. Huss V.A.R., Festl H., Schleifer K.H. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4 184192. [CrossRef]
    [Google Scholar]
  13. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721. [CrossRef]
    [Google Scholar]
  14. Kimura M. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111120. [CrossRef]
    [Google Scholar]
  15. Kluge A.G., Farris F.S. ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18 132. [CrossRef]
    [Google Scholar]
  16. Kuykendall L.D., Roy M.A., O'Neill J.J., Devine T.E. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38 358361. [CrossRef]
    [Google Scholar]
  17. Lee J.S., Shin Y.K., Yoon J.H., Takeuchi M., Pyun Y.R., Park Y.H. ( 2001;). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51 14911498.
    [Google Scholar]
  18. Liu W.Y., Zeng J., Wang L., Dou Y.T., Yang S.S. ( 2005;). Halobacillus dabanensis sp. nov. and Halobacillus aidingensis sp. nov., isolated from salt lakes in Xinjiang, China. Int J Syst Evol Microbiol 55 19911996. [CrossRef]
    [Google Scholar]
  19. Logan N.A., Berge O., Bishop A.H., Busse H.J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59 21142121. [CrossRef]
    [Google Scholar]
  20. Marmur J. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3 208218. [CrossRef]
    [Google Scholar]
  21. Marmur J., Doty P. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5 109118. [CrossRef]
    [Google Scholar]
  22. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241. [CrossRef]
    [Google Scholar]
  23. Pan Y., Huang H., Meng J., Xiao H., Li C., Meng L., Hong S., Liu H., Wang X., Jiang J. ( 2012;). [Biodiversity of the culturable halotolerant and halophilic bacteria isolated from saline-alkaline soils in Songnen Plain]. Acta Microbiol Sin 52 11871194.
    [Google Scholar]
  24. Parte A.C. ( 2014;). LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42 (D1), D613D616. [CrossRef]
    [Google Scholar]
  25. Romano I., Finore I., Nicolaus G., Huertas F.J., Lama L., Nicolaus B., Poli A. ( 2008;). Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain. Int J Syst Evol Microbio 58 886890. [CrossRef]
    [Google Scholar]
  26. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425.
    [Google Scholar]
  27. Sehgal S.N., Gibbons N.E. ( 1960;). Effect of some metal ions on the growth of Halobacterium cutirubrum . Can J Microbiol 6 165169. [CrossRef]
    [Google Scholar]
  28. Smibert R.M., Krieg N.R. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  29. Soto-Ramírez N., Sánchez-Porro C., Rosas-Padilla S., Almodóvar K., Jiménez G., Machado-Rodríguez M., Zapata M., Ventosa A., Montalvo-Rodríguez R. ( 2008;). Halobacillus mangrovi sp. nov., a moderately halophilic bacterium isolated from the black mangrove Avicennia germinans . Int J Syst Evol Microbiol 58 125130. [CrossRef]
    [Google Scholar]
  30. Spring S., Ludwig W., Marquez M.C., Ventosa A., Schleifer K.-H. ( 1996;). Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46 492496. [CrossRef]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739. [CrossRef]
    [Google Scholar]
  32. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882. [CrossRef]
    [Google Scholar]
  33. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464. [CrossRef]
    [Google Scholar]
  34. Xu X.W., Wu Y.H., Zhou Z., Wang C.S., Zhou Y.G., Zhang H.B., Wang Y., Wu M. ( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57 16191624. [CrossRef]
    [Google Scholar]
  35. Yoon J.-H., Kang K.H., Park Y.-H. ( 2003;). Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int J Syst Evol Microbiol 53 687693. [CrossRef]
    [Google Scholar]
  36. Yoon J.-H., Kang K.H., Oh T.-K., Park Y.-H. ( 2004;). Halobacillus locisalis sp. nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles 8 2328. [CrossRef]
    [Google Scholar]
  37. Yoon J.-H., Kang S.-J., Lee C.-H., Oh H.W., Oh T.-K. ( 2005;). Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 55 24132417. [CrossRef]
    [Google Scholar]
  38. Yoon J.-H., Kang S.-J., Jung Y.-T., Oh T.-K. ( 2007;). Halobacillus campisalis sp. nov., containing meso-diaminopimelic acid in the cell-wall peptidoglycan, and emended description of the genus Halobacillus . Int J Syst Evol Microbiol 57 20212025. [CrossRef]
    [Google Scholar]
  39. Yoon J.-H., Kang S.-J., Oh T.-K. ( 2008;). Halobacillus seohaensis sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 58 622627. [CrossRef]
    [Google Scholar]
  40. Zhou Y., Dong J., Wang X., Huang X., Zhang K.Y., Zhang Y.Q., Guo Y.F., Lai R., Li W.J. ( 2007;). Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 57 17651769. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000198
Loading
/content/journal/ijsem/10.1099/ijs.0.000198
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error