1887

Abstract

A novel sulfate-reducing bacterium, designated strain Pf12B, was isolated from sediment of meromictic Lake Harutori in Japan. Cells were vibroid (1.0 × 3.0–4.0 μm), motile and Gram-stain-negative. For growth, the optimum pH was 7.0–7.5 and the optimum temperature was 42–45 °C. Strain Pf12B used sulfate, thiosulfate and sulfite as electron acceptors. The G+C content of the genomic DNA was 55.4 mol%. Major cellular fatty acids were C and C. The strain was desulfoviridin-positive. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the order in the class . The closest relative was DSM 4028 with which it shared 91  % 16S rRNA gene sequence similarity. On the basis of phylogenetic and phenotypic characterization, a novel species of a new genus belonging to the family is proposed, gen. nov., sp. nov. The type strain of is Pf12B ( = NBRC 110391 = DSM 28890).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000197
2015-06-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1902.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000197&mimeType=html&fmt=ahah

References

  1. Cord-Ruwisch R. ( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4 3336 [CrossRef].
    [Google Scholar]
  2. Dahle H., Garshol F., Madsen M., Birkeland N.-K. ( 2008;). Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek 93 3749 [CrossRef] 17588160.
    [Google Scholar]
  3. Dias M., Salvado J.C., Monperrus M., Caumette P., Amouroux D., Duran R., Guyoneaud R. ( 2008;). Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 31 3037 [CrossRef] 18453046.
    [Google Scholar]
  4. Engelkirk P.G., Duben-Engelkirk J., Dowell V.R. ( 1992). Principles and Practice of Clinical Anaerobic Bacteriology., Belmont, CA: Star Publishing Company;.
    [Google Scholar]
  5. Genthner B.R.S., Devereux R. ( 2009;). Genus I. Desulfomicrobium . . In Bergey's Manual of Systematic Bacteriology vol. 3 , 2nd edn.., pp. 11811187. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. New York: Spinger;.
    [Google Scholar]
  6. Harris J.K., Caporaso J.G., Walker J.J., Spear J.R., Gold N.J., Robertson C.E., Hugenholtz P., Goodrich J., McDonald D., other authors. ( 2013;). Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7 5060 [CrossRef] 22832344.
    [Google Scholar]
  7. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. ( 1984;). Estimation of DNA base composition by high-performance liquid chromatography of its nuclease PI hydrolysate. Agric Biol Chem 48 31693172 [CrossRef].
    [Google Scholar]
  8. Klein M., Friedrich M., Roger A.J., Hugenholtz P., Fishbain S., Abicht H., Blackall L.L., Stahl D.A., Wagner M. ( 2001;). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183 60286035 [CrossRef] 11567003.
    [Google Scholar]
  9. Kubo K., Kojima H., Fukui M. ( 2014;). Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake. Syst Appl Microbiol 37 510519 [CrossRef] 25034383.
    [Google Scholar]
  10. Kuever J., Rainey F.A., Widdel F. ( 2006;). Desulfothermus gen. nov. In List of New Names and Combinations Previously Effectively, but not Validly, Published, Validation List 107. Int J Syst Evol Microbiol 56 16 [CrossRef] 16403855.
    [Google Scholar]
  11. Kuever J., Rainey F.A., Widdel F. ( 2009;). Order II. Desulfovibrionales ord. nov. . In Bergey's Manual of Systematic Bacteriology vol. 3 , 2nd edn.., pp. 11811187. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. New York: Spinger;.
    [Google Scholar]
  12. Lane D.J. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. New York: Wiley;.
    [Google Scholar]
  13. Langendijk P.S., Kulik E.M., Sandmeier H., Meyer J., van der Hoeven J.S. ( 2001;). Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Int J Syst Evol Microbiol 51 10351044 [CrossRef] 11411671.
    [Google Scholar]
  14. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. ( 2007;). clustal w clustal_x version 2.0. Bioinformatics 23 29472948 [CrossRef] 17846036.
    [Google Scholar]
  15. Meyer B., Kuever J. ( 2007;). Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73 76647679 [CrossRef] 17921272.
    [Google Scholar]
  16. Muyzer G., Hottenträger S., Teske A., Wawer C. ( 1996;). Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA a new molecular approach to analyze the genetic diversity of mixed microbial communities. . In Molecular Microbial Ecology Manual, pp. 3.4.4/13.4.4/23. Edited by Akkermans A. D. L., Van Elsas J. D., De Brujin F. Dordrecht: Kluwer Academic;.
    [Google Scholar]
  17. Rabus R., Nordhaus R., Ludwig W., Widdel F. ( 1993;). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59 14441451 7686000.
    [Google Scholar]
  18. Santillano D., Boetius A., Ramette A. ( 2010;). Improved dsrA-based terminal restriction fragment length polymorphism analysis of sulfate-reducing bacteria. Appl Environ Microbiol 76 53085311 [CrossRef] 20543035.
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [CrossRef] 21546353.
    [Google Scholar]
  20. Thevenieau F., Fardeau M.-L., Ollivier B., Joulian C., Baena S. ( 2007;). Desulfomicrobium thermophilum sp. nov., a novel thermophilic sulphate-reducing bacterium isolated from a terrestrial hot spring in Colombia. Extremophiles 11 295303 [CrossRef] 17136317.
    [Google Scholar]
  21. Widdel F., Bak F. ( 1992;). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotes vol. 4 , 2nd edn.., pp. 33523378 [CrossRef] Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000197
Loading
/content/journal/ijsem/10.1099/ijs.0.000197
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error