1887

Abstract

A novel sulfate-reducing bacterium, designated strain Pf12B, was isolated from sediment of meromictic Lake Harutori in Japan. Cells were vibroid (1.0 × 3.0–4.0 μm), motile and Gram-stain-negative. For growth, the optimum pH was 7.0–7.5 and the optimum temperature was 42–45 °C. Strain Pf12B used sulfate, thiosulfate and sulfite as electron acceptors. The G+C content of the genomic DNA was 55.4 mol%. Major cellular fatty acids were C and C. The strain was desulfoviridin-positive. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the order in the class . The closest relative was DSM 4028 with which it shared 91  % 16S rRNA gene sequence similarity. On the basis of phylogenetic and phenotypic characterization, a novel species of a new genus belonging to the family is proposed, gen. nov., sp. nov. The type strain of is Pf12B ( = NBRC 110391 = DSM 28890).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000197
2015-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1902.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000197&mimeType=html&fmt=ahah

References

  1. Cord-Ruwisch R.. ( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4: 33–36 [CrossRef].
    [Google Scholar]
  2. Dahle H., Garshol F., Madsen M., Birkeland N.-K.. ( 2008;). Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek 93: 37–49 [CrossRef] 17588160.
    [Google Scholar]
  3. Dias M., Salvado J.C., Monperrus M., Caumette P., Amouroux D., Duran R., Guyoneaud R.. ( 2008;). Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 31: 30–37 [CrossRef] 18453046.
    [Google Scholar]
  4. Engelkirk P.G., Duben-Engelkirk J., Dowell V.R.. ( 1992;). Principles and Practice of Clinical Anaerobic Bacteriology., Belmont, CA: Star Publishing Company;.
    [Google Scholar]
  5. Genthner B.R.S., Devereux R.. ( 2009;). Genus I. Desulfomicrobium. . In Bergey's Manual of Systematic Bacteriologyvol. 3, 2nd edn.., pp. 1181–1187. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B.. New York: Spinger;.
    [Google Scholar]
  6. Harris J.K., Caporaso J.G., Walker J.J., Spear J.R., Gold N.J., Robertson C.E., Hugenholtz P., Goodrich J., McDonald D., other authors. ( 2013;). Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7: 50–60 [CrossRef] 22832344.
    [Google Scholar]
  7. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984;). Estimation of DNA base composition by high-performance liquid chromatography of its nuclease PI hydrolysate. Agric Biol Chem 48: 3169–3172 [CrossRef].
    [Google Scholar]
  8. Klein M., Friedrich M., Roger A.J., Hugenholtz P., Fishbain S., Abicht H., Blackall L.L., Stahl D.A., Wagner M.. ( 2001;). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183: 6028–6035 [CrossRef] 11567003.
    [Google Scholar]
  9. Kubo K., Kojima H., Fukui M.. ( 2014;). Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake. Syst Appl Microbiol 37: 510–519 [CrossRef] 25034383.
    [Google Scholar]
  10. Kuever J., Rainey F.A., Widdel F.. ( 2006;). Desulfothermus gen. nov. In List of New Names and Combinations Previously Effectively, but not Validly, Published, Validation List 107. Int J Syst Evol Microbiol 56: 1–6 [CrossRef] 16403855.
    [Google Scholar]
  11. Kuever J., Rainey F.A., Widdel F.. ( 2009;). Order II. Desulfovibrionales ord. nov. . In Bergey's Manual of Systematic Bacteriologyvol. 3, 2nd edn.., pp. 1181–1187. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B.. New York: Spinger;.
    [Google Scholar]
  12. Lane D.J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. New York: Wiley;.
    [Google Scholar]
  13. Langendijk P.S., Kulik E.M., Sandmeier H., Meyer J., van der Hoeven J.S.. ( 2001;). Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Int J Syst Evol Microbiol 51: 1035–1044 [CrossRef] 11411671.
    [Google Scholar]
  14. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. ( 2007;). clustal w clustal_x version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] 17846036.
    [Google Scholar]
  15. Meyer B., Kuever J.. ( 2007;). Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73: 7664–7679 [CrossRef] 17921272.
    [Google Scholar]
  16. Muyzer G., Hottenträger S., Teske A., Wawer C.. ( 1996;). Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA a new molecular approach to analyze the genetic diversity of mixed microbial communities. . In Molecular Microbial Ecology Manual, pp. 3.4.4/1–3.4.4/23. Edited by Akkermans A. D. L., Van Elsas J. D., De Brujin F.. Dordrecht: Kluwer Academic;.
    [Google Scholar]
  17. Rabus R., Nordhaus R., Ludwig W., Widdel F.. ( 1993;). Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59: 1444–14517686000.
    [Google Scholar]
  18. Santillano D., Boetius A., Ramette A.. ( 2010;). Improved dsrA-based terminal restriction fragment length polymorphism analysis of sulfate-reducing bacteria. Appl Environ Microbiol 76: 5308–5311 [CrossRef] 20543035.
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] 21546353.
    [Google Scholar]
  20. Thevenieau F., Fardeau M.-L., Ollivier B., Joulian C., Baena S.. ( 2007;). Desulfomicrobium thermophilum sp. nov., a novel thermophilic sulphate-reducing bacterium isolated from a terrestrial hot spring in Colombia. Extremophiles 11: 295–303 [CrossRef] 17136317.
    [Google Scholar]
  21. Widdel F., Bak F.. ( 1992;). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotesvol. 4, 2nd edn.., pp. 3352–3378 [CrossRef] Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000197
Loading
/content/journal/ijsem/10.1099/ijs.0.000197
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error