1887

Abstract

A Gram-staining-negative, strictly heterotrophic and aerobic bacterium, strain TS-T44, was isolated from a saline lake, Tuosu Lake in Qaidam basin, Qinghai province, China. Its taxonomic position was investigated using a polyphasic approach. Cells of strain TS-T44 were non-endospore-forming, non-motile rods, 0.8–1.2 μm wide and 1.2–3.0 μm long. Catalase- and oxidase-positive. Growth occurred in the presence of up to 8  % (w/v) NaCl (optimum, 3.0  %) and at 15–35 °C (optimum, 25 °C) and pH 7.0–10.0 (optimum, pH 7.5–8.5). Cω7 was the predominant fatty acid. The major respiratory quinone was Q-10. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and an unknown lipid. The DNA G+C content was 65.5 mol% [determined from the melting temperature (m)]. Phylogenetic trees based on 16S rRNA gene sequences showed that strain TS-T44 was associated with the genus and showed highest sequence similarity to CL-SK44 (97.7  %), CL-JM1 (97.5  %) and DPG-138 (97.3  %), and < 97  % to other species. DNA–DNA relatedness of strain TS-T44 to JCM 15447, JCM 15446 and KCTC 23882 was 23 ± 3  %, 33 ± 4  % and 35 ± 2  %, respectively. Based on the data presented, it is concluded that strain TS-T44 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TS-T44 ( = CGMCC 1.12478 = JCM 19516).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000195
2015-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1889.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000195&mimeType=html&fmt=ahah

References

  1. Altschul S.F. , Gish W. , Miller W. , Myers E.W. , Lipman D.J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Collins M.D. . ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . London: Academic Press;.
    [Google Scholar]
  3. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  4. Dong X.Z. , Cai M.Y. . ( 2001;). Determinative Manual for Routine Bacteriology., Beijing: Scientific Press; (English translation).
    [Google Scholar]
  5. Eguchi M. , Nishikawa T. , Macdonald K. , Cavicchioli R. , Gottschal J.C. , Kjelleberg S. . ( 1996;). Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62: 1287–1294 [PubMed].
    [Google Scholar]
  6. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  7. Fitch W.M. . ( 1971;). Toward defining course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  8. Huß V.A. , Festl H. , Schleifer K.H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hwang C.Y. , Bae G.D. , Yih W. , Cho B.C. . ( 2009;). Marivita cryptomonadis gen. nov, sp. nov. and Marivita litorea sp. nov., of the family Rhodobacteraceae, isolated from marine habitats. Int J Syst Evol Microbiol 59: 1568–1575 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kates M. . ( 1986;). Techniques of Lipidology , 2nd edn.., Amsterdam: Elsevier;.
    [Google Scholar]
  11. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kimura M. . doi:10.1017/CBO9780511623486 ( 1983;). The Neutral Theory of Molecular Evolution., Cambridge: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  13. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  14. Nokhal T.H. , Schlegel H.G. . ( 1983;). Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 33: 26–37 [CrossRef].
    [Google Scholar]
  15. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  16. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  17. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  18. Vandamme P. , Pot B. , Gillis M. , de Vos P. , Kersters K. , Swings J. . ( 1996;). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407–438 [PubMed].
    [Google Scholar]
  19. Weisburg W.G. , Barns S.M. , Pelletier D.A. , Lane D.J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  20. Wu C. , Lu X. , Qin M. , Wang Y. , Ruan J. . ( 1989;). Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing) 16: 176–178.
    [Google Scholar]
  21. Yoon J.H. , Kang S.J. , Jung Y.T. , Oh T.K. . ( 2010;). Gaetbulicola byunsanensis gen. nov., sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 60: 196–199 [CrossRef] [PubMed].
    [Google Scholar]
  22. Yoon J.H. , Kang S.J. , Lee S.Y. , Jung Y.T. , Lee J.S. , Oh T.K. . ( 2012;). Marivita hallyeonensis sp. nov., isolated from seawater, reclassification of Gaetbulicola byunsanensis as Marivita byunsanensis comb. nov. and emended description of the genus Marivita Hwang et al. 2009. Int J Syst Evol Microbiol 62: 839–843 [CrossRef] [PubMed].
    [Google Scholar]
  23. Yoon J.H. , Kang S.J. , Lee J.S. . ( 2013;). Marivita geojedonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63: 423–427 [CrossRef] [PubMed].
    [Google Scholar]
  24. Zhong Z.P. , Liu Y. , Liu H.C. , Wang F. , Zhou Y.G. , Liu Z.P. . ( 2014;). Roseibium aquae sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol 64: 2812–2818 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000195
Loading
/content/journal/ijsem/10.1099/ijs.0.000195
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error