1887

Abstract

Three strains of methylotrophic (FAM1, RZ18-153 and RZ94) isolated from Lake Washington sediment samples were characterized. Based on phylogenetic analysis of 16S rRNA gene sequences the strains should be assigned to the genus . Similarly to other members of the family, the strains show broad metabolic capabilities and are able to utilize a number of organic acids, alcohols and aromatic compounds in addition to methanol and methylamine. The main fatty acids were 16:1ω7 (49–59 %) and 16:0 (32–29 %). Genomes of all isolates were sequenced, assembled and annotated in collaboration with the DOE Joint Genome Institute (JGI). Genome comparison revealed that the strains FAM1, RZ18-153 and RZ94 are closely related to each other and almost equally distant from two previously described species of the genus , and . Like other methylotrophic species of the genus , all three strains possess one-subunit PQQ-dependent ethanol/methanol dehydrogenase (Mdh-2), the -methylglutamate pathway and the serine cycle (isocitrate lyase/malate synthase, Icl/ms variant). Like , strains FAM1, RZ18-153 and RZ94 have a quinohemoprotein amine dehydrogenase, a tungsten-containing formaldehyde ferredoxin oxidoreductase, phenol hydroxylase, and the complete Calvin cycle. Similarly to , the three strains possess two-subunit methanol dehydrogenase (MxaFI), monoamine oxidase (MAO) and nitrogenase. Based on the phenotypic and genomic data, the strains FAM1, RZ18-153 and RZ94 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FAM1 ( = JCM 30542 = VKM = B-2888).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000190
2015-07-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2227.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000190&mimeType=html&fmt=ahah

References

  1. Anthony C. . ( 1982;). The Biochemistry of Methylotrophs New York: Academic Press;.
    [Google Scholar]
  2. Baytshtok V. , Lu H. , Park H. , Kim S. , Yu R. , Chandran K. . ( 2009;). Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnol Bioeng 102: 1527–1536 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bennett S. . ( 2004;). Solexa Ltd. Pharmacogenomics 5: 433–438 [CrossRef] [PubMed].
    [Google Scholar]
  4. Butler J. , MacCallum I. , Kleber M. , Shlyakhter I.A. , Belmonte M.K. , Lander E.S. , Nusbaum C. , Jaffe D.B. . ( 2008;). ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res 18: 810–820 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cai T. , Qian L. , Cai S. , Chen L. . ( 2011;). Biodegradation of benazolin-ethyl by strain Methyloversatilis sp. cd-1 isolated from activated sludge. Curr Microbiol 62: 570–577 [CrossRef] [PubMed].
    [Google Scholar]
  6. Crowther G.J. , Kosály G. , Lidstrom M.E. . ( 2008;). Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190: 5057–5062 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dawson R.M.C. , Elliott D.C. , Elliott W.H. , Jones K.M. . ( 1986;). Data for Biochemical Research Oxford: Clarendon Press;.
    [Google Scholar]
  8. Doronina N.V. , Kaparullina E.N. , Trotsenko Y.A. . ( 2014;). Methyloversatilis thermotolerans sp. nov., a novel thermotolerant facultative methylotroph isolated from a hot spring. Int J Syst Evol Microbiol 64: 158–164 [CrossRef] [PubMed].
    [Google Scholar]
  9. Eichhorn E. , van der Ploeg J.R. , Leisinger T. . ( 1999;). Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli.. J Biol Chem 274: 26639–26646 [CrossRef] [PubMed].
    [Google Scholar]
  10. Ewing B. , Green P. . ( 1998;). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186–194 [PubMed].[CrossRef]
    [Google Scholar]
  11. Ewing B. , Hillier L. , Wendl M.C. , Green P. . ( 1998;). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185 [CrossRef] [PubMed].
    [Google Scholar]
  12. Goldfarb K.C. , Karaoz U. , Hanson C.A. , Santee C.A. , Bradford M.A. , Treseder K.K. , Wallenstein M.D. , Brodie E.L. . ( 2011;). Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol 2: 94 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gordon D. , Abajian C. , Green P. . ( 1998;). Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202 [CrossRef] [PubMed].
    [Google Scholar]
  14. Goris J. , Konstantinidis K.T. , Klappenbach J.A. , Coenye T. , Vandamme P. , Tiedje J.M. . ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  15. Harder W. , Attwood M.M. , Quayle J.R. . ( 1973;). Methanol assimilation by Hyphomicrobium sp. J Gen Microbiol 78: 155–163 [CrossRef].
    [Google Scholar]
  16. Kalyuzhnaya M.G. , De Marco P. , Bowerman S. , Pacheco C.C. , Lara J.C. , Lidstrom M.E. , Chistoserdova L. . ( 2006;). Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56: 2517–2522 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kalyuzhnaya M.G. , Hristova K.R. , Lidstrom M.E. , Chistoserdova L. . ( 2008;). Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190: 3817–3823 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kittichotirat W. , Good N.M. , Hall R. , Bringel F. , Lajus A. , Médigue C. , Smalley N.E. , Beck D. , Bumgarner R. , other authors . ( 2011;). Genome sequence of Methyloversatilis universalis FAM5T, a methylotrophic representative of the order Rhodocyclales . J Bacteriol 193: 4541–4542 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kong Y. , Nielsen J.L. , Nielsen P.H. . ( 2004;). Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 70: 5383–5390 [CrossRef] [PubMed].
    [Google Scholar]
  20. Latypova E. , Yang S. , Wang Y.-S. , Wang T. , Chavkin T.A. , Hackett M. , Schäfer H. , Kalyuzhnaya. M.G. . 2010;;. Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol. Microbiol. 75::426–439.[CrossRef]
    [Google Scholar]
  21. Nichols P.D. , Guckert J.B. , White D.C. . ( 1986;). Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5: 49–55 [CrossRef].
    [Google Scholar]
  22. Parrish C.C. . ( 1999;). Determination of total lipid, lipid classes, and fatty acids in aquatic samples. . In Lipids in Freshwater Ecosystems, pp. 4–20. Edited by Arts M. T. , Wainman B. C. . New York: Springer; [CrossRef].
    [Google Scholar]
  23. Sambrook J. , Fritsch E.F. , Maniatis T. . ( 1989;). Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  24. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  25. Zerbino D.R. , Birney E. . ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829 [CrossRef] [PubMed].
    [Google Scholar]
  26. Zilles J.L. , Peccia J. , Kim M.W. , Hung C.H. , Noguera D.R. . ( 2002;). Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl Environ Microbiol 68: 2763–2769 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000190
Loading
/content/journal/ijsem/10.1099/ijs.0.000190
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error