1887

Abstract

The microalgae of the genus are the preferential phycobionts in , and lichens. Recent studies have highlighted the hidden diversity of the genus, even though phycobionts hosting species of the genus in Mediterranean and Canarian ecosystems have been poorly explored. Phylogenetic analyses were made by concatenation of the sequences obtained with a plastid – LSU rDNA – and two nuclear – internal transcribed spacer (ITS) rDNA and actin – molecular markers of the phycobionts living in several populations of the - complex, and s. str. widely distributed in these areas in a great variety of substrata and habitats. A new strongly supported clade was obtained in relation to the previously published phylogenies. Minimum genetic variation was detected between our haplotypes and other sequences available in the GenBank database. The correct identification of the fungal partners was corroborated by the ITS rDNA barcode. In this study we provide a detailed characterization comprising chloroplast morphology, and ultrastructural and phylogenetic analyses of a novel phycobiont species, here described as sp. nov. Barreno, Chiva, Moya et Škaloud. A cryopreserved holotype specimen has been deposited in the Culture Collection of Algae of Charles University in Prague, Czech Republic (CAUP) as CAUP H 1015. We suggest the use of a combination of several nuclear and plastid molecular markers, as well as ultrastructural (transmission electron and confocal microscopy) techniques, both in culture and in the symbiotic state, to improve novel species delimitation of phycobionts in lichens.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000185
2015-06-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1838.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000185&mimeType=html&fmt=ahah

References

  1. Abràmoff M. D. , Magalhães P. J. , Ram S. J. . ( 2004; ). Image processing with ImageJ. . Biophotonics International 11:, 36–43.
    [Google Scholar]
  2. Ahmadjian V. . ( 1987; ). Coevolution in lichens. . Ann N Y Acad Sci 503:, 307–315. [CrossRef]
    [Google Scholar]
  3. Ahmadjian V. . ( 1993; ). The Lichen Symbiosis. New York:: Wiley;.
    [Google Scholar]
  4. Ahti T. . ( 2000; ). Cladoniaceae. . Flora Neotropica Monograph 78:, 1–363.
    [Google Scholar]
  5. Aschenbrenner I. A. , Cardinale M. , Berg G. , Grube M. . ( 2014; ). Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens?. Environ Microbiol 16:, 3743–3752. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bačkor M. , Peksa O. , Škaloud P. , Backorová M. . ( 2010; ). Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. . Ecotoxicol Environ Saf 73:, 603–612. [CrossRef] [PubMed]
    [Google Scholar]
  7. Barreno, E. (2013). Life is symbiosis. In Once Upon A Time: Lynn Margulis. A Portrait by Colleagues and Friends, pp. 56–60. Edited by Carmen Chica. Septimus, Barcelona. http://www.bubok.es/autores/carmenchica
  8. Beiggi S. , Piercey-Normore M. D. . ( 2007; ). Evolution of ITS ribosomal RNA secondary structures in fungal and algal symbionts of selected species of Cladonia sect. Cladonia (Cladoniaceae, Ascomycotina). . J Mol Evol 64:, 528–542. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bischoff, H. N. & Bold, H. C. (1963). Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publication no. 6318.
  10. Boisvert F. M. , van Koningsbruggen S. , Navascués J. , Lamond A. I. . ( 2007; ). The multifunctional nucleolus. . Nat Rev Mol Cell Biol 8:, 574–585. [CrossRef] [PubMed]
    [Google Scholar]
  11. Burgaz A. R. , Ahti T. . ( 1992; ). Contribution to the study of the genera Cladina and Cladonia in Spain. I. . Nova Hedwigia 55:, 37–53.
    [Google Scholar]
  12. Burgaz A. R. , Ahti T. . ( 2009; ). Cladoniaceae ( Flora Liquenológica Ibérica vol. 4). Madrid:: Sociedad Española de Liquenología;.
    [Google Scholar]
  13. Caisová L. , Marin B. , Melkonian M. . ( 2011; ). A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae). . BMC Evol Biol 11:, 262. [CrossRef] [PubMed]
    [Google Scholar]
  14. Casano L. M. , del Campo E. M. , García-Breijo F. J. , Reig-Armiñana J. , Gasulla F. , Del Hoyo A. , Guéra A. , Barreno E. . ( 2011; ). Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition?. Environ Microbiol 13:, 806–818. [CrossRef] [PubMed]
    [Google Scholar]
  15. Castresana J. . ( 2000; ). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef] [PubMed]
    [Google Scholar]
  16. Coleman A. W. . ( 2003; ). ITS2 is a double-edged tool for eukaryote evolutionary comparisons. . Trends Genet 19:, 370–375. [CrossRef] [PubMed]
    [Google Scholar]
  17. Coleman A. W. , Maria Preparata R. , Mehrotra B. , Mai J. C. . ( 1998; ). Derivation of the secondary structure of the ITS-1 transcript in Volvocales and its taxonomic correlations. . Protist 149:, 135–146. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dal Grande F. , Alors D. , Divakar P. K. , Bálint M. , Crespo A. , Schmitt I. . ( 2014; ). Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. . Mol Phylogenet Evol 72:, 54–60. [CrossRef] [PubMed]
    [Google Scholar]
  19. del Campo E. M. , Casano L. M. , Gasulla F. , Barreno E. . ( 2010; a). Suitability of chloroplast LSU rDNA and its diverse group I introns for species recognition and phylogenetic analyses of lichen-forming Trebouxia algae. . Mol Phylogenet Evol 54:, 437–444. [CrossRef] [PubMed]
    [Google Scholar]
  20. del Campo E. M. , Gimeno J. , Casano L. M. , Gasulla F. , García-Breijo F. , Reig-Armiñana J. , Gasulla F. , Barreno E. . ( 2010; b). South European populations of Ramalina farinacea (L.) Ach. share different Trebouxia algae. . Bibliotheca Lichenologia 105:, 247–256.
    [Google Scholar]
  21. del Campo E. M. , Catalá S. , Gimeno J. , del Hoyo A. , Martínez-Alberola F. , Casano L. M. , Grube M. , Barreno E. . ( 2013; ). The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. . FEMS Microbiol Ecol 83:, 310–323. [CrossRef] [PubMed]
    [Google Scholar]
  22. Fernández-Mendoza F. , Domaschke S. , García M. A. , Jordan P. , Martín M. P. , Printzen C. . ( 2011; ). Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata . . Mol Ecol 20:, 1208–1232. [CrossRef] [PubMed]
    [Google Scholar]
  23. Fontaine K. M. , Ahti T. , Piercey-Normore M. D. . ( 2010; ). Convergent evolution in Cladonia gracilis and allies. . Lichenologist 42:, 323–338. [CrossRef]
    [Google Scholar]
  24. Friedl T. . ( 1989; ). Comparative ultrastructure of pyrenoids in Trebouxia (Microthamniales, Chlorophyta). . Plant Syst Evol 164:, 145–159. [CrossRef]
    [Google Scholar]
  25. Friedl T. , Büdel B. . ( 2008; ). Photobionts. . In Lichen Biology, pp. 9–26. Edited by Nash T. H. Nash III . . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  26. Galun M. . ( 1988; ). Lichenization. . In CRC Handbook of Lichenology, vol. II, pp. 153–169. Edited by Galun M. . . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  27. Gardes M. , Bruns T. D. . ( 1993; ). ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. . Mol Ecol 2:, 113–118. [CrossRef] [PubMed]
    [Google Scholar]
  28. Gasulla F. , de Nova P. G. , Esteban-Carrasco A. , Zapata J. M. , Barreno E. , Guéra A. . ( 2009; ). Dehydration rate and time of desiccation affect recovery of the lichen alga [corrected] Trebouxia erici: alternative and classical protective mechanisms. . Planta 231:, 195–208. [CrossRef] [PubMed]
    [Google Scholar]
  29. Gasulla F. , Jain R. , Barreno E. , Guéra A. , Balbuena T. S. , Thelen J. J. , Oliver M. J. . ( 2013; ). The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. . Plant Cell Environ 36:, 1363–1378. [CrossRef] [PubMed]
    [Google Scholar]
  30. Grube M. , Hawksworth D. L. . ( 2007; ). Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. . Mycol Res 111:, 1116–1132. [CrossRef] [PubMed]
    [Google Scholar]
  31. Hausner G. , Wang X. . ( 2005; ). Unusual compact rDNA gene arrangements within some members of the Ascomycota: evidence for molecular co-evolution between ITS1 and ITS2. . Genome 48:, 648–660. [CrossRef] [PubMed]
    [Google Scholar]
  32. Honegger R. . ( 1986; ). Ultrastructural studies in lichens. Haustorial types and their frequencies in a range of lichens with trebouxioid photobionts. . New Phytol 103:, 785–795. [CrossRef]
    [Google Scholar]
  33. Joseph N. , Krauskopf E. , Vera M. I. , Michot B. . ( 1999; ). Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. . Nucleic Acids Res 27:, 4533–4540. [CrossRef] [PubMed]
    [Google Scholar]
  34. Katoh K. , Misawa K. , Kuma K. I. , Miyata T. . ( 2002; ). mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. . Nucleic Acids Res 30:, 3059–3066. [CrossRef] [PubMed]
    [Google Scholar]
  35. Kelly L. J. , Hollingsworth P. M. , Coppins B. J. , Ellis C. J. , Harrold P. , Tosh J. , Yahr R. . ( 2011; ). DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. . New Phytol 191:, 288–300. [CrossRef] [PubMed]
    [Google Scholar]
  36. Koetschan C. , Förster F. , Keller A. , Schleicher T. , Ruderisch B. , Schwarz R. , Müller T. , Wolf M. , Schultz J. . ( 2010; ). The ITS2 Database III–sequences and structures for phylogeny. . Nucleic Acids Res 38: (suppl 1), D275–D279. [CrossRef] [PubMed]
    [Google Scholar]
  37. Kotelko R. , Piercey-Normore M. D. . ( 2010; ). Cladonia pyxidata and C. pocillum; genetic evidence to regard them as conspecific. . Mycologia 102:, 534–545. [CrossRef] [PubMed]
    [Google Scholar]
  38. Lalev A. I. , Nazar R. N. . ( 1998; ). Conserved core structure in the internal transcribed spacer 1 of the Schizosaccharomyces pombe precursor ribosomal RNA. . J Mol Biol 284:, 1341–1351. [CrossRef] [PubMed]
    [Google Scholar]
  39. Lalev A. I. , Nazar R. N. . ( 1999; ). Structural equivalence in the transcribed spacers of pre-rRNA transcripts in Schizosaccharomyces pombe . . Nucleic Acids Res 27:, 3071–3078. [CrossRef] [PubMed]
    [Google Scholar]
  40. Lechowicz M. J. , Adams M. S. . ( 1974; ). Ecology of Cladonia lichens. II. Comparative physiological ecology of C. mitis, C. rangiferina, and C. uncialis . . Can J Bot 52:, 411–422. [CrossRef]
    [Google Scholar]
  41. Litterski B. , Ahti T. . ( 2004; ). World distribution of selected European Cladonia species. . Symb Bot Upsal 34:, 205–236.
    [Google Scholar]
  42. Lott T. J. , Burns B. M. , Zancope-Oliveira R. , Elie C. M. , Reiss E. . ( 1998; ). Sequence analysis of the internal transcribed spacer 2 (ITS2) from yeast species within the genus Candida . . Curr Microbiol 36:, 63–69. [CrossRef] [PubMed]
    [Google Scholar]
  43. Magain N. , Sérusiaux E. . ( 2014; ). Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). . PLoS ONE 9:, e89876. [CrossRef] [PubMed]
    [Google Scholar]
  44. Mai J. C. , Coleman A. W. . ( 1997; ). The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. . J Mol Evol 44:, 258–271. [CrossRef] [PubMed]
    [Google Scholar]
  45. Marchant R. , Robards A. W. . ( 1968; ). Membrane systems associated with the plasmalemma of plant cells. . Ann Bot 32:, 457–471.
    [Google Scholar]
  46. Molins A. , García-Breijo F. J. , Reig-Armiñana J , del Campo E. M. , Casano L. M. , Barreno E. . ( 2013; ). Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen Parmotrema pseudotinctorum . . Vieraea: Folia scientarum biologicarum canariensium 41:, 349–370.
    [Google Scholar]
  47. Muggia L. , Grube M. , Tretiach M. . ( 2008; ). Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). . Mycol Prog 7:, 147–160. [CrossRef]
    [Google Scholar]
  48. Muggia L. , Vancurova L. , Škaloud P. , Peksa O. , Wedin M. , Grube M. . ( 2013; ). The symbiotic playground of lichen thalli–a highly flexible photobiont association in rock-inhabiting lichens. . FEMS Microbiol Ecol 85:, 313–323. [CrossRef] [PubMed]
    [Google Scholar]
  49. Muggia L. , Pérez-Ortega S. , Kopun T. , Zellnig G. , Grube M. . ( 2014; ). Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. . Ann Bot (Lond) 114:, 463–475. [CrossRef] [PubMed]
    [Google Scholar]
  50. Munger, C. A., Walker, D. A., Maier, H. A. & Hamilton, T. D. (2008). Spatial analysis of glacial geology, surficial geomorphology, and vegetation in the Toolik Lake region: Relevance to past and future land-cover changes. In Ninth International Permafrost Conference, pp. 1255–1260. Edited by D. I. Kane & K. M Hinkel. Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK.
  51. Myllys L. , Stenroos S. , Thell A. , Ahti T. . ( 2003; ). Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). . Mol Phylogenet Evol 27:, 58–69. [CrossRef] [PubMed]
    [Google Scholar]
  52. Nelsen M. P. , Gargas A. . ( 2006; ). Actin type I introns offer potential for increasing phylogenetic resolution in Asterochloris (Chlorophyta: Trebouxiophyceae). . Lichenologist 38:, 435–440. [CrossRef]
    [Google Scholar]
  53. Nelsen M. P. , Gargas A. . ( 2008; ). Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). . New Phytol 177:, 264–275.[PubMed]
    [Google Scholar]
  54. Nelsen M. P. , Gargas A. . ( 2009; ). Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). . Bryologist 112:, 404–417. [CrossRef]
    [Google Scholar]
  55. Nyati S. , Scherrer S. , Werth S. , Honegger R. . ( 2014; ). Green-algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichen-forming ascomycetes). . Lichenologist 46:, 189–212. [CrossRef]
    [Google Scholar]
  56. Nylander, J. A. A. (2004). MrModeltest V2. Distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University.
  57. Ohmura Y. , Kawachi M. , Kasai F. , Watanabe M. M. , Takeshita S. . ( 2006; ). Genetic combinations of symbionts in vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. . Bryologist 109:, 43–59. [CrossRef]
    [Google Scholar]
  58. Osyczka P. , Rola K. . ( 2013; ). Phenotypic plasticity of primary thallus in selected Cladonia species (lichenized Ascomycota: Cladoniaceae). . Biologia 68:, 365–372. [CrossRef]
    [Google Scholar]
  59. Peksa O. , Škaloud P. . ( 2008; ). Changes in chloroplast structure in lichenized algae. . Symbiosis 46:, 153–160.
    [Google Scholar]
  60. Peksa O. , Škaloud P. . ( 2011; ). Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). . Mol Ecol 20:, 3936–3948. [CrossRef] [PubMed]
    [Google Scholar]
  61. Piercey-Normore M. D. . ( 2004; ). Selection of algal genotypes by three species of lichen fungi in the genus Cladonia . . Can J Bot 82:, 947–961. [CrossRef]
    [Google Scholar]
  62. Piercey-Normore M. D. , DePriest P. T. . ( 2001; ). Algal switching among lichen symbioses. . Am J Bot 88:, 1490–1498. [CrossRef] [PubMed]
    [Google Scholar]
  63. Piercey-Normore M. D. , Ahti T. , Goward T. . ( 2010; ). Phylogenetic and haplotype analyses of four segregates within Cladonia arbuscula s.l. . Botany 88:, 397–408. [CrossRef]
    [Google Scholar]
  64. Pino-Bodas R. , Martín M. P. , Burgaz A. R. . ( 2010; ). Insight into the Cladonia convoluta-C. foliacea (Cladoniaceae, Ascomycota) complex and related species, revealed through morphological, biochemical and phylogenetic analyses. . Systematics and Biodiversity 8:, 575–586. [CrossRef]
    [Google Scholar]
  65. Pino-Bodas R. , Burgaz A. R. , Martin M. P. , Lumbsch H. T. . ( 2012; a). Species delimitations in the Cladonia cariosa group (Cladoniaceae, Ascomycota). . Lichenologist 44:, 121–135. [CrossRef]
    [Google Scholar]
  66. Pino-Bodas R. , Ahti T. , Stenroos S. , Martín M. P. , Burgaz A. R. . ( 2012; b). Cladonia conista and C. humilis (Cladoniaceae) are different species. . Bibliotheca Lichenologica 108:, 161–176.
    [Google Scholar]
  67. Pino-Bodas R. , Martín M. P. , Burgaz A. R. . ( 2012; c). Cladonia subturgida and C. iberica (Cladoniaceae) form a single, morphologically and chemically polymorphic species. . Mycol Prog 11:, 269–278. [CrossRef]
    [Google Scholar]
  68. Pino-Bodas R. , Martín M. P. , Burgaz A. R. , Lumbsch H. T. . ( 2013; a). Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. . Mol Ecol Resour 13:, 1058–1068.[PubMed]
    [Google Scholar]
  69. Pino-Bodas R. , Martín M. P. , Stenroos S. , Burgaz A. R. . ( 2013; b). Cladonia verticillata (Cladoniaceae, Ascomycota), new record to Iberian Peninsula. . Bot Complut 37:, 21–25.
    [Google Scholar]
  70. Rambold G. , Friedl T. , Beck A. . ( 1998; ). Photobionts in lichens: possible indicators of phylogenetic relationships?. Bryologist 101:, 392–397. [CrossRef]
    [Google Scholar]
  71. Řídká T. , Peksa O. , Rai H. , Upreti D. K. , Škaloud P. . ( 2014; ). Photobiont diversity in Indian Cladonia Lichens, with special emphasis on the geographical patterns. . In Terricolous Lichens in India, pp. 53–71. Edited by Rai H. , Upreti D. K. . . New York:: Springer;.[CrossRef]
    [Google Scholar]
  72. Rivas-Martínez, S. & Rivas-Sáenz, S. (2009). Worldwide bioclimatic classification system. Phytosociological research center. Spain. http://www.globalbioclimatics.org
  73. Robards A. W. . ( 1968; ). On the ultrastructure of differentiating secondary xylem in willow. . Protoplasma 65:, 449–464. [CrossRef]
    [Google Scholar]
  74. Ronquist F. , Teslenko M. , van der Mark P. , Ayres D. L. , Darling A. , Höhna S. , Larget B. , Liu L. , Suchard M. A. , Huelsenbeck J. P. . ( 2012; ). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. . Syst Biol 61:, 539–542. [CrossRef] [PubMed]
    [Google Scholar]
  75. Schoch C. L. , Seifert K. A. , Huhndorf S. , Robert V. , Spouge J. L. , Levesque C. A. , Chen W. , Bolchacova E. , Voigt K. et al. ( 2012; ). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. . Proc Natl Acad Sci U S A 109:, 6241–6246. [CrossRef] [PubMed]
    [Google Scholar]
  76. Schultz J. , Maisel S. , Gerlach D. , Müller T. , Wolf M. . ( 2005; ). A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. . RNA 11:, 361–364. [CrossRef] [PubMed]
    [Google Scholar]
  77. Škaloud P. , Peksa O. . ( 2008; a). Comparative study of chloroplast morphology and ontogeny in Asterochloris (Trebouxiophyceae, Chlorophyta). . Biologia 63:, 873–880. [CrossRef]
    [Google Scholar]
  78. Škaloud, P. & Peksa, O. (2008b). Phylogeny, morphology and taxonomic revision of the symbiotic alga Asterochloris (Trebouxiophyceae, Chlorophyta). In Algal Culture Collections 2008, Dunstaffnage Marine Laboratory, UK.
  79. Škaloud P. , Peksa O. . ( 2010; ). Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). . Mol Phylogenet Evol 54:, 36–46. [CrossRef] [PubMed]
    [Google Scholar]
  80. Škaloud P. , Rindi F. . ( 2013; ). Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). . J Eukaryot Microbiol 60:, 350–362. [CrossRef] [PubMed]
    [Google Scholar]
  81. Škaloud P. , Steinová J. , Ridka T. , Vancurova L. , Peksa O. . ( 2015; ). Assembling the challenging puzzle of algal biodiversity: species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). . J Phycol accepted 17 Mar 2015.
    [Google Scholar]
  82. Škaloudová M. , Škaloud P. . ( 2013; ). A new species of Chrysosphaerella (Chrysophyceae: Chromulinales), Chrysosphaerella rotundata sp. nov., from Finland. . Phytotaxa 130:, 34–42. [CrossRef]
    [Google Scholar]
  83. Spurr A.R. . ( 1969; ). A low-viscosity epoxy resin embedding for electron microscopy. . J Ultrastruct res 26:, 31–43. [CrossRef]
    [Google Scholar]
  84. Steinová J. , Stenroos S. , Grube M. , Škaloud P. . ( 2013; ). Genetic diversity and species delimitation of the zeorin-containing red-fruited Cladonia species (lichenized Ascomycota) assessed with ITS rDNA and β-tubulin data. . Lichenologist 45:, 665–684. [CrossRef]
    [Google Scholar]
  85. Stenroos S. K. , DePriest P. T. . ( 1998; ). SSU rDNA phylogeny of cladoniiform lichens. . Am J Bot 85:, 1548–1559. [CrossRef] [PubMed]
    [Google Scholar]
  86. Stenroos S. , Hyvönen J. , Myllys L. , Thell A. , Ahti T. . ( 2002; a). Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. . Cladistics 18:, 237–278. [CrossRef]
    [Google Scholar]
  87. Stenroos S. , Myllys L. , Thell A. , Hyvönen J. . ( 2002; b). Phylogenetic hypotheses: Cladoniaceae, Stereocaulaceae, Baeomycetaceae, and Icmadophilaceae revisited. . Mycol Prog 1:, 267–282. [CrossRef]
    [Google Scholar]
  88. Swofford, D. L. (2002). paup*. Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer.
  89. Tschermak-Woess E. . ( 1980; ). Asterochloris phycobiontica, gen. et spec. nov., der phycobiont der Flechte Varicellaria carneonivea . . Plant Syst Evol 135:, 279–294. [CrossRef]
    [Google Scholar]
  90. White T. J. , Bruns T. , Lee S. J. W. T. , Taylor J. W. . ( 1990; ). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. . In PCR Protocols: A Guide to Methods and Applications, pp. 315–322. Edited by Innis M. A. , Gelfand D. H. , Sninsky J. J. , White T. J. . . New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  91. Yahr R. , Vilgalys R. , Depriest P. T. . ( 2004; ). Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. . Mol Ecol 13:, 3367–3378. [CrossRef] [PubMed]
    [Google Scholar]
  92. Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence data sets under the maximum likelihood criterion. PhD dissertation, University of Texas, Austin, TX, USA.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000185
Loading
/content/journal/ijsem/10.1099/ijs.0.000185
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error