1887

Abstract

Six slow-growing rhizobial strains isolated from effective nodules of were classified into the genus based on their 16S rRNA gene sequences. The results of multilocus sequence analysis of , and genes and 16S–23S rRNA intergenic spacer (IGS) sequence phylogeny indicated that the six strains belonged to two novel species, represented by CCBAU 53325 and CCBAU 51502, which were consistent with the results of DNA–DNA hybridization; CCBAU 53325 had 17.65–25.59 % relatedness and CCBAU 51502 had 22.69–44.58 % relatedness with five closely related type strains, USDA 76, LMG 24246, CCBAU 23086, LMG 24556 and USDA 6. In addition, analysis of phenotypic characteristics and fatty acid profiles also distinguished the test strains from defined species of . Two novel species, sp. nov., represented by the type strain CCBAU 53325 ( = HAMBI 3614 = CGMCC 1.13002 = LMG 28425), and sp. nov., represented by the type strain CCBAU 51502 ( = HAMBI 3613 = CGMCC 1.13001), are proposed to accommodate the strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000183
2015-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1831.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000183&mimeType=html&fmt=ahah

References

  1. Chen W. X., Wang E. T.. ( 2011; ). Chinese Root Nodule Bacteria, p. 468. Edited by Wang H. G., Sun Q., Wang J... Beijing:: Science Press;.
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A.. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  3. Dénarié J., Debellé F., Promé J. C.. ( 1996; ). Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. . Annu Rev Biochem 65:, 503–535. [CrossRef] [PubMed]
    [Google Scholar]
  4. Durán D., Rey L., Navarro A., Busquets A., Imperial J., Ruiz-Argüeso T.. ( 2014; ). Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. . Syst Appl Microbiol 37:, 336–341. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fang X. F., Fang B. Z.. ( 2006; ). The wood physical and mechanical properties of Erythrophleum fordii. . J Fujian Forest Sci Tech 34:, 6–147 (in Chinese).
    [Google Scholar]
  6. Gao J., Sun J., Li Y., Wang E., Chen W.. ( 1994; ). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. . Int J Syst Bacteriol 44:, 151–158. [CrossRef]
    [Google Scholar]
  7. Graham P., Sadowsky M., Keyser H., Barnet Y., Bradley R., Cooper J., De Ley D., Jarvis B., Roslycky E. et al. ( 1991; ). Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. . Int J Syst Bacteriol 41:, 582–587. [CrossRef]
    [Google Scholar]
  8. Guerrouj K., Ruíz-Díez B., Chahboune R., Ramírez-Bahena M. H., Abdelmoumen H., Quiñones M. A., El Idrissi M. M., Velázquez E., Fernández-Pascual M. et al. ( 2013; ). Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. . Syst Appl Microbiol 36:, 218–223. [CrossRef] [PubMed]
    [Google Scholar]
  9. Haukka K., Lindström K., Young J. P.. ( 1998; ). Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. . Appl Environ Microbiol 64:, 419–426.[PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  11. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N.. ( 2001; ). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147:, 981–993.[PubMed]
    [Google Scholar]
  12. Lu J., Kang L., He X., Xu D.. ( 2011; ). Multilocus sequence analysis of the rhizobia from five woody legumes in Southern China. . Afr J Microbiol Res 5:, 5343–5353.
    [Google Scholar]
  13. Menna P., Barcellos F. G., Hungria M.. ( 2009; ). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. . Int J Syst Evol Microbiol 59:, 2934–2950. [CrossRef] [PubMed]
    [Google Scholar]
  14. Navarro E., Simonet P., Normand P., Bardin R.. ( 1992; ). Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. . Arch Microbiol 157:, 107–115.[PubMed]
    [Google Scholar]
  15. Rivas R., Martens M., de Lajudie P., Willems A.. ( 2009; ). Multilocus sequence analysis of the genus Bradyrhizobium. . Syst Appl Microbiol 32:, 101–110. [CrossRef] [PubMed]
    [Google Scholar]
  16. Sahgal M., Johri B. N.. ( 2006; ). Taxonomy of rhizobia: current status. . Curr Sci 90:, 486–487.
    [Google Scholar]
  17. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  18. Schutter M. E., Dick R. P.. ( 2000; ). Comparison of fatty acid methylester (FAME) methods for characterizing microbial communities. . Soil Sci Soc Am J 64:, 1659–1668. [CrossRef]
    [Google Scholar]
  19. Sein C. C., Mitlöner R.. ( 2011; ). Erythrophleum fordii Oliver: Ecology and Silviculture, pp. 1–4. Bogor, Indonesia:: Center for International Forestry Research;.
    [Google Scholar]
  20. Shi J. H., Huang Z. L., Yi W. M., Ouyang X. J., Zhou X. Y.. ( 2005; ). Dynamics of Erythrophleum fordii community and conservation strategies. . J Northwest Forest Univ 20:, 65–69 (in Chinese).
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  22. Tan Z. Y., Xu X. D., Wang E. T., Gao J. L., Martinez-Romero E., Chen W. X.. ( 1997; ). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. . Int J Syst Bacteriol 47:, 874–879. [CrossRef] [PubMed]
    [Google Scholar]
  23. Terefework Z., Kaijalainen S., Lindström K.. ( 2001; ). AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. . J Biotechnol 91:, 169–180. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef] [PubMed]
    [Google Scholar]
  25. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R.. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based PCR (rep-PCR). . Methods Cell Mol Biol 5:, 25–40.
    [Google Scholar]
  26. Vincent J. M.. ( 1970; ). Manual for the Practical Study of the Root Nodule Bacteria (IBP Handbook, vol. 15). Oxford:: Blackwell;.
    [Google Scholar]
  27. Vinuesa P., Silva C., Werner D., Martínez-Romero E. L.. ( 2005; ). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. . Mol Phylogenet Evol 34:, 29–54. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wang R., Chang Y. L., Zheng W. T., Zhang D., Zhang X. X., Sui X. H., Wang E. T., Hu J. Q., Zhang L. Y., Chen W. X.. ( 2013; ). Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. . Syst Appl Microbiol 36:, 101–105. [CrossRef] [PubMed]
    [Google Scholar]
  29. Willems A., Coopman R., Gillis M.. ( 2001; ). Phylogenetic and DNA–DNA hybridization analyses of Bradyrhizobium species. . Int J Syst Evol Microbiol 51:, 111–117.[PubMed]
    [Google Scholar]
  30. Willems A., Munive A., de Lajudie P., Gillis M.. ( 2003; ). In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. . Syst Appl Microbiol 26:, 203–210. [CrossRef] [PubMed]
    [Google Scholar]
  31. Yao Y., Wang R., Lu J. K., Sui X. H., Wang E. T., Chen W. X.. ( 2014; ). Genetic diversity and evolution of Bradyrhizobium populations nodulating Erythrophleum fordii, an evergreen tree indigenous to the southern subtropical region of China. . Appl Environ Microbiol 80:, 6184–6194. [CrossRef] [PubMed]
    [Google Scholar]
  32. Zhao Z. G., Guo J. J., Sha E., Lin K. Q., Zeng J., Xu J. M.. ( 2009; ). Geographic distribution and phenotypic variation of fruit and seed of Erythrophleum fordii in China. . Chin Bull Bot 44:, 338–344 (in Chinese).
    [Google Scholar]
  33. Zheng W. T., Li Y. Jr, Wang R., Sui X. H., Zhang X. X., Zhang J. J., Wang E. T., Chen W. X.. ( 2013; ). Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. . Int J Syst Evol Microbiol 63:, 2002–2007. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000183
Loading
/content/journal/ijsem/10.1099/ijs.0.000183
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error