1887

Abstract

An endophytic actinobacterial strain RZ36, isolated from roots of the salt-marsh plant , was subjected to a polyphasic taxonomic characterization. 16S rRNA gene sequence analysis revealed that this strain belonged to the genus . The closest phylogenetic relative was DSM 12509, with a pairwise 16S rRNA gene sequence similarity of 98.8 %. The DNA–DNA hybridization value between strain RZ36 and DSM 12509 was 16 %. The affiliation to the genus was corroborated by phenotypic and chemotaxonomic characteristics. The cell-wall peptidoglycan type was B2β and the diagnostic diamino acid was ornithine. Whole-cell sugars detected were galactose, glucose, rhamnose, ribose and xylose. The major fatty acids were anteiso-C and iso-C and the major menaquinone was MK-11 (64 %). Main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The genomic DNA G+C content was 69.7 mol%. Thus, on the basis of phenotypic, genotypic and chemotaxonomic data, strain RZ36 is considered to represent a novel species of the genus , for which the name sp. nov. (type strain RZ36 = DSM 27100 = CECT 8356) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000177
2015-06-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1794.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000177&mimeType=html&fmt=ahah

References

  1. Alves A., Correia A., Igual J. M., Trujillo M. E.. ( 2014; ). Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. . Syst Appl Microbiol 37:, 474–479. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bacon C. W., Glenn A. E., Hinton D. M.. ( 2002; ). Isolation, in planta detection, and culture of endophytic bacteria and fungi. . In Manual of Environmental Microbiology, pp. 543–553. Edited by Hurst C. J., Crawford R. L., Knudsen G. R., McInerney M. J., Stetzenbach L. D., Walter M. V.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Bates R. G., Bower V. E.. ( 1956; ). Alkaline solutions for pH control. . Anal Chem 28:, 1322–1324. [CrossRef]
    [Google Scholar]
  4. Behrendt U., Ulrich A., Schumann P.. ( 2001; ). Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov.. Int J Syst Evol Microbiol 51:, 1267–1276.[PubMed]
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef] [PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D., Kroppenstedt R. M.. ( 1983; ). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4:, 65–78. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gevers D., Huys G., Swings J.. ( 2001; ). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. . FEMS Microbiol Lett 205:, 31–36. [CrossRef] [PubMed]
    [Google Scholar]
  10. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998; ). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  11. Hillis D. M., Bull J. J.. ( 1993; ). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. . Syst Biol 42:, 182–192. [CrossRef]
    [Google Scholar]
  12. Karojet S., Kunz S., van Dongen J. T.. ( 2012; ). Microbacterium yannicii sp. nov., isolated from Arabidopsis thaliana roots. . Int J Syst Evol Microbiol 62:, 822–826. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kimura M.. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lane D. J.. ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  16. Madhaiyan M., Poonguzhali S., Lee J.-S., Lee K.-C., Saravanan V. S., Santhanakrishnan P.. ( 2010; ). Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. . Int J Syst Evol Microbiol 60:, 1687–1692. [CrossRef] [PubMed]
    [Google Scholar]
  17. McIlvaine T. C.. ( 1921; ). A buffer solution for colorimetric comparison. . J Biol Chem 49:, 183–186.
    [Google Scholar]
  18. McInroy J. A., Kloepper J. W.. ( 1995; ). Survey of indigenous bacterial endophytes from cotton and sweet corn. . Plant Soil 173:, 337–342. [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Orla-Jensen S.. ( 1919; ). The Lactic Acid Bacteria. Copenhagen:: Høst and Son;.
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sasser M.. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  24. Schumann P.. ( 2011; ). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  25. Staneck J. L., Roberts G. D.. ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  26. Takeuchi M., Hatano K.. ( 1998; ). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. . Int J Syst Bacteriol 48:, 739–747. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013; ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tindall B. J.. ( 1990; a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  30. Tindall B. J.. ( 1990; b). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  31. Trujillo M. E., Kroppenstedt R. M., Schumann P., Carro L., Martínez-Molina E.. ( 2006; ). Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. . Int J Syst Evol Microbiol 56:, 2381–2385. [CrossRef] [PubMed]
    [Google Scholar]
  32. Uchida K., Kudo T., Suzuki K.-I., Nakase T.. ( 1999; ). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. . J Gen Appl Microbiol 45:, 49–56. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000177
Loading
/content/journal/ijsem/10.1099/ijs.0.000177
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error