1887

Abstract

A Gram-stain-negative, aerobic, yellow-pigmented, flexirubin-negative, rod-shaped, non-motile and psychrophilic bacterial strain, PAMC 27237, was isolated from marine sediment of the Ross Sea, Antarctica. Strain PAMC 27237 grew at 0–20 °C (optimally at 17 °C), at pH 5.0–9.5 (optimally at pH 7.0) and in the presence of 0–3.5 % (w/v) NaCl (optimally at 1.5–2.5 %). The major fatty acids (≥5 %) were iso-C 3-OH, C 2-OH, anteiso-C, summed feature 3 (Cω6/Cω7c), iso-C 3-OH, anteiso-Cω9, anteiso-C A, iso-C 3-OH and iso-C G. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids, four unidentified lipids and a glycolipid. The major respiratory quinone was MK-6. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain PAMC 27237 belongs to the genus , showing high similarities with the type strains of (97.2 %), (97.0 %) and (96.4 %). Average nucleotide identity values between strain PAMC 27237 and the type strains of and were 83.1 and 84.2 %, respectively, and mean genome-to-genome distances were 22.4–24.2 %, indicating that strain PAMC 27237 is clearly distinguished from the most closely related species of the genus . The genomic DNA G+C content calculated from genome sequences was 33.5 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain PAMC 27237 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PAMC 27237 ( = KCTC 42130 = JCM 30370).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000168
2015-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1735.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000168&mimeType=html&fmt=ahah

References

  1. Auch A. F. , von Jan M. , Klenk H. P. , Göker M. . ( 2010; ). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2:, 117–134. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bernardet J.-F. , Nakagawa Y. . ( 2006; ). An introduction to the family Flavobacteriaceae . . In The Prokaryotes. A Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 455–480. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . New York:: Springer;.
    [Google Scholar]
  3. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  4. Choo Y. J. , Lee K. , Song J. , Cho J.-C. . ( 2007; ). Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia’. . Int J Syst Evol Microbiol 57:, 532–537. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. . ( 1985; ). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  6. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  7. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 27:, 401–410.
    [Google Scholar]
  8. Goris J. , Konstantinidis K. T. , Klappenbach J. A. , Coenye T. , Vandamme P. , Tiedje J. M. . ( 2007; ). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  9. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim O. S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kovacs N. . ( 1956; ). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature 178:, 703. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lee Y. M. , Jung Y.-J. , Hong S. G. , Kim J. H. , Lee H. K. . ( 2014; ). Diversity and physiological characteristics of culturable bacteria from marine sediments of Ross Sea, Antarctica. . Kor J Microbiol 50:, 119–127. [CrossRef]
    [Google Scholar]
  13. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  14. Nedashkovskaya O. I. , Kim S. B. , Han S. K. , Rhee M. S. , Lysenko A. M. , Rohde M. , Zhukova N. V. , Frolova G. M. , Mikhailov V. V. , Bae K. S. . ( 2004; ). Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. . Int J Syst Evol Microbiol 54:, 1257–1261. [CrossRef] [PubMed]
    [Google Scholar]
  15. Nedashkovskaya O. I. , Vancanneyt M. , Kim S. B. , Hoste B. , Bae K. S. . ( 2007; ). Algibacter mikhailovii sp. nov., a novel marine bacterium of the family Flavobacteriaceae, and emended description of the genus Algibacter . . Int J Syst Evol Microbiol 57:, 2147–2150. [CrossRef] [PubMed]
    [Google Scholar]
  16. Park S. C. , Hwang Y. M. , Lee J. H. , Baik K. S. , Seong C. N. . ( 2013; ). Algibacter agarivorans sp. nov. and Algibacter agarilyticus sp. nov., isolated from seawater, reclassification of Marinivirga aestuarii as Algibacter aestuarii comb. nov. and emended description of the genus Algibacter . . Int J Syst Evol Microbiol 63:, 3494–3500. [CrossRef] [PubMed]
    [Google Scholar]
  17. Park S. C. , Choe H. N. , Hwang Y. M. , Baik K. S. , Kim S. N. , Lee Y. S. , Jung J. S. , Seong C. N. . ( 2013; a). Marinivirga aestuarii gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from marine environments, and emended descriptions of the genera Hyunsoonleella, Jejuia and Pontirhabdus and the species Hyunsoonleella jejuensis, Jejuia pallidilutea and Pontirhabdus pectinivorans . . Int J Syst Evol Microbiol 63:, 1524–1531. [CrossRef] [PubMed]
    [Google Scholar]
  18. Park S. C. , Hwang Y. M. , Choe H. N. , Baik K. S. , Kim H. , Seong C. N. . ( 2013; b). Algibacter aquimarinus sp. nov., isolated from a marine environment, and reclassification of Pontirhabdus pectinivorans as Algibacter pectinivorans comb. nov.. Int J Syst Evol Microbiol 63:, 2038–2042. [CrossRef] [PubMed]
    [Google Scholar]
  19. Park S. C. , Hwang Y. M. , Lee J. H. , Baik K. S. , Seong C. N. . ( 2013; c). Algibacter agarivorans sp. nov. and Algibacter agarilyticus sp. nov., isolated from seawater, reclassification of Marinivirga aestuarii as Algibacter aestuarii comb. nov. and emended description of the genus Algibacter . . Int J Syst Evol Microbiol 63, 3494–3500. [CrossRef]
    [Google Scholar]
  20. Park S. , Jung Y. T. , Yoon J. H. . ( 2013; d). Algibacter miyuki sp. nov., a member of the family Flavobacteriaceae isolated from leachate of a brown algae reservoir. . Antonie van Leeuwenhoek 104:, 253–260. [CrossRef] [PubMed]
    [Google Scholar]
  21. Park S. , Lee J. S. , Lee K. C. , Yoon J. H. . ( 2013; e). Algibacter undariae sp. nov., isolated from a brown algae reservoir. . Int J Syst Evol Microbiol 63:, 3704–3709. [CrossRef] [PubMed]
    [Google Scholar]
  22. Parte A. C. . ( 2014; ). LPSN—list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: (D1), 613–616. [CrossRef]
    [Google Scholar]
  23. Richter M. , Rosselló-Móra R. . ( 2009; ). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  24. Rosselló-Mora R. , Amann R. . ( 2001; ). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC News Lett 20:, 16.
    [Google Scholar]
  27. Swofford, D. L. (2002). paup*. Phylogenetic analysis using parsimony (* and other methods), version 4. Sunderland, MA: Sinauer Associates.
  28. Yi H. , Cho J.-C. , Chun J. . ( 2011; ). Pontirhabdus pectinivorans gen. nov., sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 2475–2481. [CrossRef] [PubMed]
    [Google Scholar]
  29. Yoon J. H. , Park S. . ( 2013; ). Algibacter wandonensis sp. nov., isolated from sediment around a brown algae (Undaria pinnatifida) reservoir. . Int J Syst Evol Microbiol 63:, 4771–4776. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000168
Loading
/content/journal/ijsem/10.1099/ijs.0.000168
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error