1887

Abstract

The species was isolated from nodules of and its type strain deposited in several collections. Some of these type strains, such as those deposited in the USDA and ATCC collections before 1990, are not coincident with the original strain, NZP 2213, deposited in the NZP culture collection. The analysis of the 16S rRNA gene showed that strains USDA 3471 and ATCC 33669 formed independent branches from that occupied by NZP 2213 and related to those occupied by WSM2075 and IFO 15243, respectively, with 99.9 % similarity in both cases. However, the analysis of concatenated , and genes with similarities lower than 96, 98 and 94 %, respectively, between strains USDA 3471 and WSM2075 and between strains ATCC 33669 and IFO 15243, indicated that the strains USDA 3471 and ATCC 33669 represent different species of the genus . These results were confirmed by DNA–DNA hybridization experiments and phenotypic characterization. Therefore, the two strains were reclassified as representatives of the two species sp. nov. (type strain USDA 3471 = CECT 8631 = LMG 17826t2) and sp. nov. (type strain ATCC 33669 = CECT 8632 = LMG 28313).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000164
2015-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1703.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000164&mimeType=html&fmt=ahah

References

  1. Chun, J. & Goodfellow, M. (1995). A phylogenetic analysis of the genus Nocardia with 16S rRNA sequences. Int J Syst Bacteriol 45, 240–245.
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P.. ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. . Int J Syst Evol Microbiol 51:, 2037–2048. [CrossRef] [PubMed]
    [Google Scholar]
  4. Jarvis B. D. W., Pankhurst C. E., Patel J. J.. ( 1982; ). Rhizobium loti, a new species of legume root nodule bacteria. . Int J Syst Bacteriol 32:, 378–380. [CrossRef]
    [Google Scholar]
  5. Jarvis B. D. W., van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M.. ( 1997; ). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov.. Int J Syst Bacteriol 47:, 895–898. [CrossRef]
    [Google Scholar]
  6. Kimura M.. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  7. Mandel M., Marmur J.. ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12:, 195–206. [CrossRef]
    [Google Scholar]
  8. Peix A., Ramírez-Bahena M. H., Velázquez E., Bedmar E. J.. ( 2015; ). Bacterial associations with legumes. . Crit Rev Plant Sci 34:, 17–42. [CrossRef]
    [Google Scholar]
  9. Ramírez-Bahena M. H., Hernández M., Peix A., Velázquez E., León-Barrios M.. ( 2012; ). Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov.. Syst Appl Microbiol 35:, 334–341. [CrossRef] [PubMed]
    [Google Scholar]
  10. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2007; a). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. . Lett Appl Microbiol 44:, 181–187. [CrossRef] [PubMed]
    [Google Scholar]
  11. Rivas R., Laranjo M., Mateos P. F., Oliveira S., Martínez-Molina E., Velázquez E.. ( 2007; b). Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. . Lett Appl Microbiol 44:, 412–418. [CrossRef] [PubMed]
    [Google Scholar]
  12. Rogers J. S., Swofford D. L.. ( 1998; ). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. . Syst Biol 47:, 77–89. [CrossRef] [PubMed]
    [Google Scholar]
  13. Saitou N., Nei M.. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  14. Sawada H., Ieki H., Oyaizu H., Matsumoto S.. ( 1993; ). Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. . Int J Syst Bacteriol 43:, 694–702. [CrossRef] [PubMed]
    [Google Scholar]
  15. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  16. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  17. Vinuesa P., León-Barrios M., Silva C., Willems A., Jarabo-Lorenzo A., Pérez-Galdona R., Werner D., Martínez-Romero E.. ( 2005; ). Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. . Int J Syst Evol Microbiol 55:, 569–575. [CrossRef] [PubMed]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  19. Willems A., Collins M. D.. ( 1993; ). Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. . Int J Syst Bacteriol 43:, 305–313. [CrossRef] [PubMed]
    [Google Scholar]
  20. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M.. ( 2001; a). DNA-DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed]
    [Google Scholar]
  21. Willems A., Hoste B., Tang J., Janssens D., Gillis M.. ( 2001; b). Differences between subcultures of the Mesorhizobium loti type strain from different culture collections. . Syst Appl Microbiol 24:, 549–553. [CrossRef] [PubMed]
    [Google Scholar]
  22. Yanagi M., Yamasato K.. ( 1993; ). Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. . FEMS Microbiol Lett 107:, 115–120. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000164
Loading
/content/journal/ijsem/10.1099/ijs.0.000164
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error