1887

Abstract

Modern bacterial taxonomy is based on a polyphasic approach that combines phenotypic and genotypic characteristics, including 16S rRNA sequence similarity. However, the 95 % (for genus) and 98.7 % (for species) sequence similarity thresholds that are currently recommended to classify bacterial isolates were defined by comparison of a limited number of bacterial species, and may not apply to many genera that contain human-associated species. For each of 158 bacterial genera containing human-associated species, we computed pairwise sequence similarities between all species that have names with standing in nomenclature and then analysed the results, considering as abnormal any similarity value lower than 95 % or greater than 98.7 %. Many of the current bacterial species with validly published names do not respect the 95 and 98.7 % thresholds, with 57.1 % of species exhibiting 16S rRNA gene sequence similarity rates ≥98.7 %, and 60.1 % of genera containing species exhibiting a 16S rRNA gene sequence similarity rate <95 %. In only 17 of the 158 genera studied (10.8 %), all species respected the 95 and 98.7 % thresholds. As we need powerful and reliable taxonomical tools, and as potential new tools such as pan-genomics have not yet been fully evaluated for taxonomic purposes, we propose to use as thresholds, genus by genus, the minimum and maximum similarity values observed among species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000161
2015-06-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1929.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000161&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Marcelino L. A., Klepac-Ceraj V., Polz M. F.. ( 2004; ). Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. . J Bacteriol 186:, 2629–2635. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alexander B., Andersen J. H., Cox R. P., Imhoff J. F.. ( 2002; ). Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna-Matthews-Olson protein. . Arch Microbiol 178:, 131–140. [CrossRef] [PubMed]
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  4. Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W.. ( 2013; ). GenBank. . Nucleic Acids Res 41: (Database issue), D36–D42. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bosshard P. P., Zbinden R., Abels S., Böddinghaus B., Altwegg M., Böttger E. C.. ( 2006; ). 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. . J Clin Microbiol 44:, 1359–1366. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brenner D. J., Fanning G. R., Rake A. V., Johnson K. E.. ( 1969; ). Batch procedure for thermal elution of DNA from hydroxyapatite. . Anal Biochem 28:, 447–459. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D.. ( 2003; ). Multiple sequence alignment with the clustal series of programs. . Nucleic Acids Res 31:, 3497–3500. [CrossRef] [PubMed]
    [Google Scholar]
  8. Clarridge J. E. III. ( 2004; ). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. . Clin Microbiol Rev 17:, 840–862. [CrossRef] [PubMed]
    [Google Scholar]
  9. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L.. ( 2006; ). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with arb. . Appl Environ Microbiol 72:, 5069–5072. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fournier P. E., Raoult D.. ( 2009; ). Current knowledge on phylogeny and taxonomy of Rickettsia spp.. Ann N Y Acad Sci 1166:, 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fox G. E., Magrum L. J., Balch W. E., Wolfe R. S., Woese C. R.. ( 1977; ). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. . Proc Natl Acad Sci U S A 74:, 4537–4541. [CrossRef] [PubMed]
    [Google Scholar]
  12. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. . Int J Syst Bacteriol 42:, 166–170. [CrossRef] [PubMed]
    [Google Scholar]
  13. Goujon M., McWilliam H., Li W., Valentin F., Squizzato S., Paern J., Lopez R.. ( 2010; ). A new bioinformatics analysis tools framework at EMBL-EBI. . Nucleic Acids Res 38: (Web Server issue), W695–W699. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hugenholtz P., Goebel B. M., Pace N. R.. ( 1998; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. . J Bacteriol 180:, 4765–4774.[PubMed]
    [Google Scholar]
  15. Huse S. M., Dethlefsen L., Huber J. A., Mark Welch D., Relman D. A., Sogin M. L.. ( 2008; ). Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. . PLoS Genet 4:, e1000255. [CrossRef] [PubMed]
    [Google Scholar]
  16. Janda J. M., Abbott S. L.. ( 2007; ). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. . J Clin Microbiol 45:, 2761–2764. [CrossRef] [PubMed]
    [Google Scholar]
  17. Johnson J. L.. ( 1991; ). DNA reassociation experiments. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 21–44. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ludwig W., Klenk H. P.. ( 2001; ). Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 49–65. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mignard S., Flandrois J. P.. ( 2006; ). 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. . J Microbiol Methods 67:, 574–581. [CrossRef] [PubMed]
    [Google Scholar]
  22. Morgulis A., Coulouris G., Raytselis Y., Madden T. L., Agarwala R., Schäffer A. A.. ( 2008; ). Database indexing for production Megablast searches. . Bioinformatics 24:, 1757–1764. [CrossRef] [PubMed]
    [Google Scholar]
  23. Olsen I., Johnson J. L., Moore L. V. H., Moore W. E. C.. ( 1995; ). Rejection of Clostridium putrificum and conservation of Clostridium botulinum and Clostridium sporogenes. Request for an Opinion. . Int J Syst Bacteriol 45:, 414. [CrossRef]
    [Google Scholar]
  24. Parte A. C.. ( 2014; ). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: (D1), D613–D616. [CrossRef] [PubMed]
    [Google Scholar]
  25. Pei A. Y., Oberdorf W. E., Nossa C. W., Agarwal A., Chokshi P., Gerz E. A., Jin Z., Lee P., Yang L. et al. ( 2010; ). Diversity of 16S rRNA genes within individual prokaryotic genomes. . Appl Environ Microbiol 76:, 3886–3897. [CrossRef] [PubMed]
    [Google Scholar]
  26. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. ( 2013; ). The silva ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: (Database issue), D590–D596. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ramasamy, D., Mishra, A. K., Lagier, J. C., Padhmanabhan, R., Rossi, M., Sentausa, E., Raoult, D. & Fournier, P. E. (2014). A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64, 384–391.
  28. Rosselló-Mora R.. ( 2003; ). Opinion: the species problem, can we achieve a universal concept?. Syst Appl Microbiol 26:, 323–326. [CrossRef] [PubMed]
    [Google Scholar]
  29. Roth A., Andrees S., Kroppenstedt R. M., Harmsen D., Mauch H.. ( 2003; ). Phylogeny of the genus Nocardia based on reassessed 16S rRNA gene sequences reveals underspeciation and division of strains classified as Nocardia asteroides into three established species and two unnamed taxons. . J Clin Microbiol 41:, 851–856. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sentausa E., Fournier P. E.. ( 2013; ). Advantages and limitations of genomics in prokaryotic taxonomy. . Clin Microbiol Infect 19:, 790–795. [CrossRef] [PubMed]
    [Google Scholar]
  31. Stackebrandt E., Ebers J.. ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M.. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  33. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. et al. ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  35. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  36. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J.. ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60:, 407–438.[PubMed]
    [Google Scholar]
  37. Wang Y., Zhang Z., Ramanan N.. ( 1997; ). The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. . J Bacteriol 179:, 3270–3276.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000161
Loading
/content/journal/ijsem/10.1099/ijs.0.000161
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error