1887

Abstract

A Gram-stain-negative, motile by gliding, rod-shaped bacterial strain, designated SOJ2014-1 was isolated from surface water of a polynya in the Antarctic Ocean. A comparative 16S rRNA gene sequence analysis showed that strain SOJ2014-1 belongs to the genus and is most closely related to DSM 3653 (97.5 % 16S rRNA gene sequence similarity). The G+C content of the genomic DNA of strain SOJ2014-1 was 38.8 mol%. Its predominant cellular fatty acids were summed feature 3 (composed of Cω6 and/or Cω7), iso-C 3-OH, iso-C, iso-C G and summed feature 9 (composed of iso-Cω9 and/or 10-methyl C). DNA–DNA relatedness between strain SOJ2014-1 and close relatives, DSM 3653 and LMG 22550, was below 49 %. The respiratory quinone was MK-6. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and two unidentified lipids. The strain grew at 0–35 °C (optimum, 25 °C) with 0–14.0 % (w/v) NaCl (optimum, 1.0–5.0 %). It was strictly aerobic and had different carbohydrate utilization traits compared with DSM 3653. Based on the phenotypic, chemotaxonomic and phylogenetic analyses, strain SOJ2014-1 is proposed as a representative of a novel species, . The type strain is SOJ2014-1 ( = KCTC 42185 = JCM 30387).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000160
2015-05-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1694.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000160&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chang S.-C. , Wu M.-C. , Chen W.-M. , Tsai Y.-H. , Lee T.-M. . ( 2009; ). Chitinilyticum litopenaei sp. nov., isolated from a freshwater shrimp pond, and emended description of the genus Chitinilyticum . . Int J Syst Evol Microbiol 59:, 2651–2655. [CrossRef] [PubMed]
    [Google Scholar]
  3. CLSI (2012). Performance Standards for Antimicrobial Susceptibility Testing; M100–S22. Wanye, PA: Clinical and Laboratory Standards Institute.
  4. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gonzalez J. M. , Saiz-Jimenez C. . ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef] [PubMed]
    [Google Scholar]
  7. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98. [CrossRef]
    [Google Scholar]
  8. Irgens R. L. , Suzuki I. , Staley J. T. . ( 1989; ). Gas vacuolate bacteria obtained from marine waters of Antarctica. . Curr Microbiol 18:, 261–265. [CrossRef]
    [Google Scholar]
  9. Kidd K. K. , Sgaramella-Zonta L. A. . ( 1971; ). Phylogenetic analysis: concepts and methods. . Am J Hum Genet 23:, 235–252.[PubMed]
    [Google Scholar]
  10. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721.[PubMed] [CrossRef]
    [Google Scholar]
  11. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  12. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;. [CrossRef]
    [Google Scholar]
  14. Nedashkovskaya O. I. , Vancanneyt M. , Dawyndt P. , Engelbeen K. , Vandemeulebroecke K. , Cleenwerck I. , Hoste B. , Mergaert J. , Tan T.-L. et al. ( 2005; ). Reclassification of [Cytophaga] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen. nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov.. Int J Syst Evol Microbiol 55:, 1033–1038. [CrossRef] [PubMed]
    [Google Scholar]
  15. Nedashkovskaya O. I. , Vancanneyt M. , Kim S. B. , Zhukova N. V. , Han J. H. , Mikhailov V. V. . ( 2009; ). Leeuwenhoekiella palythoae sp. nov., a new member of the family Flavobacteriaceae . . Int J Syst Evol Microbiol 59:, 3074–3077. [CrossRef] [PubMed]
    [Google Scholar]
  16. Nedashkovskaya O. I. , Kukhlevskiy A. D. , Zhukova N. V. , Kim S. B. . ( 2014; ). Flavimarina pacifica gen. nov., sp. nov., a new marine bacterium of the family Flavobacteriaceae, and emended descriptions of the genus Leeuwenhoekiella, Leeuwenhoekiella aequorea and Leeuwenhoekiella marinoflava . . Antonie van Leeuwenhoek 106:, 421–429. [CrossRef] [PubMed]
    [Google Scholar]
  17. Padron A. P. , Dockstader W. B. . ( 1972; ). Selective medium for hydrogen sulfide production by salmonellae. . Appl Microbiol 23:, 1107–1112.[PubMed]
    [Google Scholar]
  18. Pinhassi J. , Bowman J. P. , Nedashkovskaya O. I. , Lekunberri I. , Gomez-Consarnau L. , Pedrós-Alió C. . ( 2006; ). Leeuwenhoekiella blandensis sp. nov., a genome-sequenced marine member of the family Flavobacteriaceae . . Int J Syst Evol Microbiol 56:, 1489–1493. [CrossRef] [PubMed]
    [Google Scholar]
  19. Pruesse E. , Quast C. , Knittel K. , Fuchs B. M. , Ludwig W. , Peplies J. , Glöckner F. O. . ( 2007; ). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . . Nucleic Acids Res 35:, 7188–7196. [CrossRef] [PubMed]
    [Google Scholar]
  20. Reichenbach H. . ( 1989; ). The order Cytophagales Leadbetter 1974, 99AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 3, pp. 2011–2013. Edited by Staley J. T. , Bryant M. P. , Pfennig N. , Holt J. G. . . Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  21. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Newark: Microbial ID, Inc.
  23. Singh R. , Gupta N. , Goswami V. K. , Gupta R. . ( 2006; ). A simple activity staining protocol for lipases and esterases. . Appl Microbiol Biotechnol 70:, 679–682. [CrossRef] [PubMed]
    [Google Scholar]
  24. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  25. Stackebrandt E. , Goebel B. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  26. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tarrand J. J. , Gröschel D. H. . ( 1982; ). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  28. Taylor W. I. , Achanzar D. . ( 1972; ). Catalase test as an aid to the identification of Enterobacteriaceae . . Appl Microbiol 24:, 58–61.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000160
Loading
/content/journal/ijsem/10.1099/ijs.0.000160
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error