1887

Abstract

A Gram-stain-negative, motile by gliding, rod-shaped bacterial strain, designated SOJ2014-1 was isolated from surface water of a polynya in the Antarctic Ocean. A comparative 16S rRNA gene sequence analysis showed that strain SOJ2014-1 belongs to the genus and is most closely related to DSM 3653 (97.5 % 16S rRNA gene sequence similarity). The G+C content of the genomic DNA of strain SOJ2014-1 was 38.8 mol%. Its predominant cellular fatty acids were summed feature 3 (composed of Cω6 and/or Cω7), iso-C 3-OH, iso-C, iso-C G and summed feature 9 (composed of iso-Cω9 and/or 10-methyl C). DNA–DNA relatedness between strain SOJ2014-1 and close relatives, DSM 3653 and LMG 22550, was below 49 %. The respiratory quinone was MK-6. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and two unidentified lipids. The strain grew at 0–35 °C (optimum, 25 °C) with 0–14.0 % (w/v) NaCl (optimum, 1.0–5.0 %). It was strictly aerobic and had different carbohydrate utilization traits compared with DSM 3653. Based on the phenotypic, chemotaxonomic and phylogenetic analyses, strain SOJ2014-1 is proposed as a representative of a novel species, . The type strain is SOJ2014-1 ( = KCTC 42185 = JCM 30387).

Funding
This study was supported by the:
  • , National Research Foundation of Korea (NRF) funded by the Ministry of Education , (Award 2012R1A1A2A10039384 and 2014R1A1A2009901)
  • , Korea Polar Research Institute
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000160
2015-05-01
2021-03-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1694.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000160&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002 ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52, 10491070. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chang S.-C., Wu M.-C., Chen W.-M., Tsai Y.-H., Lee T.-M. ( 2009 ). Chitinilyticum litopenaei sp. nov., isolated from a freshwater shrimp pond, and emended description of the genus Chitinilyticum . . Int J Syst Evol Microbiol 59, 26512655. [CrossRef] [PubMed]
    [Google Scholar]
  3. CLSI (2012). Performance Standards for Antimicrobial Susceptibility Testing; M100–S22. Wanye, PA: Clinical and Laboratory Standards Institute.
  4. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gonzalez J. M., Saiz-Jimenez C. ( 2002 ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4, 770773. [CrossRef] [PubMed]
    [Google Scholar]
  7. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41, 9598. [CrossRef]
    [Google Scholar]
  8. Irgens R. L., Suzuki I., Staley J. T. ( 1989 ). Gas vacuolate bacteria obtained from marine waters of Antarctica. . Curr Microbiol 18, 261265. [CrossRef]
    [Google Scholar]
  9. Kidd K. K., Sgaramella-Zonta L. A. ( 1971 ). Phylogenetic analysis: concepts and methods. . Am J Hum Genet 23, 235252.[PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721.[PubMed] [CrossRef]
    [Google Scholar]
  11. Kimura M. ( 1983 ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. ( 1987 ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19, 161207. [CrossRef]
    [Google Scholar]
  13. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;. [CrossRef]
    [Google Scholar]
  14. Nedashkovskaya O. I., Vancanneyt M., Dawyndt P., Engelbeen K., Vandemeulebroecke K., Cleenwerck I., Hoste B., Mergaert J., Tan T.-L. et al. ( 2005 ). Reclassification of [Cytophaga] marinoflava Reichenbach 1989 as Leeuwenhoekiella marinoflava gen. nov., comb. nov. and description of Leeuwenhoekiella aequorea sp. nov.. Int J Syst Evol Microbiol 55, 10331038. [CrossRef] [PubMed]
    [Google Scholar]
  15. Nedashkovskaya O. I., Vancanneyt M., Kim S. B., Zhukova N. V., Han J. H., Mikhailov V. V. ( 2009 ). Leeuwenhoekiella palythoae sp. nov., a new member of the family Flavobacteriaceae . . Int J Syst Evol Microbiol 59, 30743077. [CrossRef] [PubMed]
    [Google Scholar]
  16. Nedashkovskaya O. I., Kukhlevskiy A. D., Zhukova N. V., Kim S. B. ( 2014 ). Flavimarina pacifica gen. nov., sp. nov., a new marine bacterium of the family Flavobacteriaceae, and emended descriptions of the genus Leeuwenhoekiella, Leeuwenhoekiella aequorea and Leeuwenhoekiella marinoflava . . Antonie van Leeuwenhoek 106, 421429. [CrossRef] [PubMed]
    [Google Scholar]
  17. Padron A. P., Dockstader W. B. ( 1972 ). Selective medium for hydrogen sulfide production by salmonellae. . Appl Microbiol 23, 11071112.[PubMed]
    [Google Scholar]
  18. Pinhassi J., Bowman J. P., Nedashkovskaya O. I., Lekunberri I., Gomez-Consarnau L., Pedrós-Alió C. ( 2006 ). Leeuwenhoekiella blandensis sp. nov., a genome-sequenced marine member of the family Flavobacteriaceae . . Int J Syst Evol Microbiol 56, 14891493. [CrossRef] [PubMed]
    [Google Scholar]
  19. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. ( 2007 ). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . . Nucleic Acids Res 35, 71887196. [CrossRef] [PubMed]
    [Google Scholar]
  20. Reichenbach H. ( 1989 ). The order Cytophagales Leadbetter 1974, 99AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 3, pp. 20112013. Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. . Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  21. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  22. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. Newark: Microbial ID, Inc.
  23. Singh R., Gupta N., Goswami V. K., Gupta R. ( 2006 ). A simple activity staining protocol for lipases and esterases. . Appl Microbiol Biotechnol 70, 679682. [CrossRef] [PubMed]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  25. Stackebrandt E., Goebel B. ( 1994 ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [CrossRef]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tarrand J. J., Gröschel D. H. ( 1982 ). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16, 772774.[PubMed]
    [Google Scholar]
  28. Taylor W. I., Achanzar D. ( 1972 ). Catalase test as an aid to the identification of Enterobacteriaceae . . Appl Microbiol 24, 5861.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000160
Loading
/content/journal/ijsem/10.1099/ijs.0.000160
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error