1887

Abstract

Two Gram-stain-negative, non-endospore-forming, rod-shaped bacteria, strains CC-MHSW-5 and A1392, were isolated from water of coastal hot springs located in Taiwan and China, respectively, and investigated for their taxonomic position. The two strains shared identical 16S rRNA gene sequences, a DNA-DNA hybridization value >80 % and similar genomic DNA G+C contents (64.3 and 64.6 mol%), but showed different genomic fingerprint patterns generated by BOX-PCR and three random amplification polymorphic DNA PCRs. The strains shared highest 16S rRNA gene sequence similarities with the type strains of (96.7 and 96.1 %), (96.2 and 96.1 %) and (96.1 and 95.8 %). Phylogenetic trees (based on 16S rRNA and gene sequence comparisons) showed a distinct clustering of both strains with the type strains of species of the genus and Nis3. The quinone systems of strains CC-MHSW-5 and Nis3 contained ubiquinone Q-10 as the major component. The major polyamine in both strains was -homospermidine. Putrescine, spermidine and, for strain CC-MHSW-5, spermine were found in minor concentrations. Their polar lipid profiles consisted of phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. The fatty acid profile contained major amounts of Cω7 and C cyclo ω8. On the basis of these results, the two strains are considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CC-MHSW-5 ( = CCM 8543 = LMG 28482 = DSM 29391 = CIP 110825). Based on both genotypic and phenotypic characters, it is proposed that be reclassified within the genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000155
2015-05-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1646.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000155&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996; ). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978; ). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse H.-J., Auling G.. ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  4. Doronina N. V., Kaparullina E. N., Trotsenko Y. A., Nörtemann B., Bucheli-Witschel M., Weilenmann H.-U., Egli T.. ( 2010; ). Chelativorans multitrophicus gen. nov., sp. nov. and Chelativorans oligotrophicus sp. nov., aerobic EDTA-degrading bacteria. . Int J Syst Evol Microbiol 60:, 1044–1051. [CrossRef] [PubMed]
    [Google Scholar]
  5. Egli T., Weilenmann H. U., El-Banna T., Auling G.. ( 1988; ). Gram-negative, aerobic, nitriloacetic acid utilizing bacteria from wastewater and soil. . Syst Appl Microbiol 10:, 297–305. [CrossRef]
    [Google Scholar]
  6. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P. W.. ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. . Int J Syst Evol Microbiol 51:, 2037–2048. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Glaeser S. P., Falsen E., Martin K., Kämpfer P.. ( 2013; a). Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. . Int J Syst Evol Microbiol 63:, 3623–3627. [CrossRef] [PubMed]
    [Google Scholar]
  9. Glaeser S. P., Galatis H., Martin K., Kämpfer P.. ( 2013; b). Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. . Int J Syst Evol Microbiol 63:, 3487–3493. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gonzalez J. M., Saiz-Jimenez C.. ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef] [PubMed]
    [Google Scholar]
  11. Jones D. T., Taylor W. R., Thornton J. M.. ( 1992; ). The rapid generation of mutation data matrices from protein sequences. . Comput Appl Biosci 8:, 275–282.[PubMed]
    [Google Scholar]
  12. Kämpfer P.. ( 1990; ). Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. . Zentralbl Bakteriol 273:, 164–172. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M.. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Steiof M., Dott W.. ( 1991; ). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004; ). ARB: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  16. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidiumthiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  17. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007; ). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. . Nucleic Acids Res 35:, 7188–7196. [CrossRef] [PubMed]
    [Google Scholar]
  18. Stamatakis A.. ( 2006; ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef] [PubMed]
    [Google Scholar]
  19. Stolz A., Busse H.-J., Kämpfer P.. ( 2007; ). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef] [PubMed]
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  21. Tindall B. J.. ( 1990; a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  22. Tindall B. J.. ( 1990; b). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  23. Versalovic J., Schneider M., de Bruijn F. J., Lupski J. R.. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. . Methods Mol Cell Biol 5:, 25–40.
    [Google Scholar]
  24. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A.. ( 2012; ). Thermovum composti gen. nov., sp. nov., an alphaproteobacterium from compost. . Int J Syst Evol Microbiol 62:, 2991–2996. [CrossRef] [PubMed]
    [Google Scholar]
  25. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008; ). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ziemke F., Brettar I., Höfle M. G.. ( 1997; ). Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. . Aquat Microb Ecol 13:, 63–74. [CrossRef]
    [Google Scholar]
  27. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000155
Loading
/content/journal/ijsem/10.1099/ijs.0.000155
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error