1887

Abstract

A novel Gram-stain-negative, rod-shaped, gliding, facultatively anaerobic, oxidase-negative and catalase-positive bacterium, designated FA350, was isolated from coastal sediment from Xiaoshi Island, Weihai, China. Strain FA350 showed growth on modified nutrient agar supplemented with 0.1 % -(+)-trehalose and with distilled water replaced by seawater. Optimal growth occurred at 33 °C and pH 8.5 with 4 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain FA350 belongs to a novel bacterial order in the class , and the most closely related type strains belong to the order , with 85.1–85.6 % 16S rRNA gene sequence similarity. The polar lipid profile of the novel strain consisted of phosphatidylethanolamine, phosphatidylglycerol and two unknown phospholipids. Major cellular fatty acids were iso-C, iso-C and iso-Cω10 and menaquinone MK-7 was the sole respiratory quinone. The DNA G+C content of strain FA350 was 60.3 mol%. The isolate and closely related environmental clones formed a novel order-level clade in the class . Comparative analysis of 16S rRNA gene sequences and characterization indicated that strain FA350 may represent a novel order of the . Here, we propose the name gen. nov., sp. nov. to accommodate strain FA350. The type strain of is FA350 ( = DSM 28820 = CICC 10904); ord. nov. and fam. nov. are also proposed to accommodate the novel taxon.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31370057 and 31290231)
  • National Science and Technology Major Project of China (Award 2013ZX10004217)
  • China Ocean Mineral Resources R & D Association (COMRA) Special Foundation (Award DY125-15-T-05)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000135
2015-05-01
2021-04-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1542.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000135&mimeType=html&fmt=ahah

References

  1. Amann R. I., Ludwig W., Schleifer K. H. ( 1995 ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. . Microbiol Rev 59, 143169.[PubMed]
    [Google Scholar]
  2. Boone D. R., Bryant M. P. ( 1980 ). Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. . Appl Environ Microbiol 40, 626632.[PubMed]
    [Google Scholar]
  3. Bowman J. P. ( 2000 ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50, 18611868.[PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D. ( 1981 ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45, 316354.[PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. ( 1965 ). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. Cravo-Laureau C., Matheron R., Cayol J. L., Joulian C., Hirschler-Réa A. ( 2004 a). Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. . Int J Syst Evol Microbiol 54, 7783. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cravo-Laureau C., Matheron R., Joulian C., Cayol J.-L., Hirschler-Réa A. ( 2004 b). Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulfate-reducing bacterium, and emended description of the genus Desulfatibacillum . . Int J Syst Evol Microbiol 54, 16391642. [CrossRef] [PubMed]
    [Google Scholar]
  8. Du Z.-J., Wang Y., Dunlap C., Rooney A. P., Chen G.-J. ( 2014 ). Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov.. Int J Syst Evol Microbiol 64, 16901696. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S. C., Jeon Y.-S., Lee J.-H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kluyver A. J., Van Niel C. B. ( 1936 ). Prospects for a natural system of classification of bacteria. . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 94, 369403.
    [Google Scholar]
  11. Kohring L. L., Ringelberg D. B., Devereux R., Stahl D. A., Mittelman M. W., White D. C. ( 1994 ). Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. . FEMS Microbiol Lett 119, 303308. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kuever J., Rainey F. A., Widdel F. ( 2005 ). Class IV. Deltaproteobacteria class. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, pp. 9221144. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. . New York:: Springer;. [CrossRef]
    [Google Scholar]
  13. Kunapuli U., Jahn M. K., Lueders T., Geyer R., Heipieper H. J., Meckenstock R. U. ( 2010 ). Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. . Int J Syst Evol Microbiol 60, 686695. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  15. Liu Y., Balkwill D. L., Aldrich H. C., Drake G. R., Boone D. R. ( 1999 ). Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii . . Int J Syst Bacteriol 49, 545556. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [CrossRef]
    [Google Scholar]
  18. Mountfort D. O., Brulla W. J., Krumholz L. R., Bryant M. P. ( 1984 ). Syntrophus buswellii gen. nov., sp. nov., a benzoate catabolizer from methanogenic ecosystems. . Int J Syst Bacteriol 34, 216217. [CrossRef]
    [Google Scholar]
  19. Murray R. G. E., Doetsch R. N., Robinow F. ( 1994 ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 2141. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Nakai R., Nishijima M., Tazato N., Handa Y., Karray F., Sayadi S., Isoda H., Naganuma T. ( 2014 ). Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov.. Int J Syst Evol Microbiol 64, 33533359. [CrossRef] [PubMed]
    [Google Scholar]
  21. Nevin K. P., Holmes D. E., Woodard T. L., Hinlein E. S., Ostendorf D. W., Lovley D. R. ( 2005 ). Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. . Int J Syst Evol Microbiol 55, 16671674. [CrossRef] [PubMed]
    [Google Scholar]
  22. Parte A. C. ( 2014 ). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42, D613D616. [CrossRef] [PubMed]
    [Google Scholar]
  23. Pfennig N., Biebl H. ( 1976 ). Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. . Arch Microbiol 110, 312. [CrossRef] [PubMed]
    [Google Scholar]
  24. Prakash O., Gihring T. M., Dalton D. D., Chin K. J., Green S. J., Akob D. M., Wanger G., Kostka J. E. ( 2010 ). Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. . Int J Syst Evol Microbiol 60, 546553. [CrossRef] [PubMed]
    [Google Scholar]
  25. Pruesse E., Peplies J., Glöckner F. O. ( 2012 ). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28, 18231829. [CrossRef] [PubMed]
    [Google Scholar]
  26. Qiu Y.-L., Hanada S., Ohashi A., Harada H., Kamagata Y., Sekiguchi Y. ( 2008 ). Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. . Appl Environ Microbiol 74, 20512058. [CrossRef] [PubMed]
    [Google Scholar]
  27. Sanford R. A., Cole J. R., Tiedje J. M. ( 2002 ). Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. . Appl Environ Microbiol 68, 893900. [CrossRef] [PubMed]
    [Google Scholar]
  28. Shelobolina E. S., Nevin K. P., Blakeney-Hayward J. D., Johnsen C. V., Plaia T. W., Krader P., Woodard T., Holmes D. E., Vanpraagh C. G., Lovley D. R. ( 2007 ). Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. . Int J Syst Evol Microbiol 57, 126135. [CrossRef] [PubMed]
    [Google Scholar]
  29. Shelobolina E. S., Vrionis H. A., Findlay R. H., Lovley D. R. ( 2008 ). Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. . Int J Syst Evol Microbiol 58, 10751078. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stamatakis A. ( 2006 ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22, 26882690. [CrossRef] [PubMed]
    [Google Scholar]
  31. Straub K. L., Buchholz-Cleven B. E. E. ( 2001 ). Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria. . Int J Syst Evol Microbiol 51, 18051808. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sung Y., Ritalahti K. M., Sanford R. A., Urbance J. W., Flynn S. J., Tiedje J. M., Löffler F. E. ( 2003 ). Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov.. Appl Environ Microbiol 69, 29642974. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sung Y., Fletcher K. E., Ritalahti K. M., Apkarian R. P., Ramos-Hernández N., Sanford R. A., Mesbah N. M., Löffler F. E. ( 2006 ). Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. . Appl Environ Microbiol 72, 27752782. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tindall B. J. ( 1990 a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13, 128130. [CrossRef]
    [Google Scholar]
  35. Tindall B. J. ( 1990 b). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [CrossRef]
    [Google Scholar]
  36. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R. ( 2007 ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. . Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  37. Vainshtein M., Hippe H., Kroppenstedt R. M. ( 1992 ). Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. . Syst Appl Microbiol 15, 554566. [CrossRef]
    [Google Scholar]
  38. Vandieken V., Mussmann M., Niemann H., Jørgensen B. B. ( 2006 ). Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. . Int J Syst Evol Microbiol 56, 11331139. [CrossRef] [PubMed]
    [Google Scholar]
  39. Widdel, F. (1980). Anaerober Abbau von Fettsäuren und Benzoesäure durch neu Isolierte Arten Sulfat-reduzierender Bakterien. Dissertation, Universität zu Göttingen, Lindhorst/Schaumburg-Lippe Göttingen (in German).
  40. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. ( 2008 ). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31, 241250. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yoon J. H., Yeo S. H., Oh T. K., Park Y. H. ( 2005 ). Psychrobacter alimentarius sp. nov., isolated from squid jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 55, 171176. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000135
Loading
/content/journal/ijsem/10.1099/ijs.0.000135
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error