1887

Abstract

A novel marine bacterium, designated strain 4k5, was isolated from a sediment sample of the Pacific Ocean. The strain was Gram-stain-negative, strictly aerobic, non-motile, oxidase-positive and catalase-positive and required Na for growth. Its major isoprenoid quinone was ubiquinone 8 (Q-8), and its cellular fatty acid profile consisted mainly of Cv9c (71.4 %), Cv7c (9.1 %) and C. The DNA G+C content was 45.3 mol%. 16S rRNA gene sequence analysis suggested that strain 4k5 is a member of the genus . Strain 4k5 exhibited the closely phylogenetic affinity to IFO 16270 (99.4 % 16S rRNA gene sequence similarity), T-3-2 (97.7 %), 88/2-7 (97.7 %), SW-238 (97.7 %), SC35 (97.6 %) and CMS39 (97.6 %). DNA–DNA hybridization between strain 4k5 and NBRC 103191, JCM 15603. DSM 16093, JCM 12601, JCM 16343 and DSM 15337 was 42.5, 47.0, 38.1, 23.7, 9.0 and 27.4 %, respectively. Owing to the significant differences in phenotypic and chemotaxonomic characteristics, phylogenetic analysis based on the 16S rRNA gene sequence and DNA–DNA relatedness data, the isolate merits classification within a novel species, for which the name sp. nov. is proposed. The type strain is 4k5 ( = JCM 30235 = NCIMB 14948).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000118
2015-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1450.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000118&mimeType=html&fmt=ahah

References

  1. Baik K. S., Park S. C., Lim C. H., Lee K. H., Jeon D. Y., Kim C. M., Seong C. N.. ( 2010; ). Psychrobacter aestuarii sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 60:, 1631–1636. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. (editors) ( 1993; ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  3. Bozal N., Montes M. J., Tudela E., Guinea J.. ( 2003; ). Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov.. Int J Syst Evol Microbiol 53:, 1093–1100. [CrossRef] [PubMed]
    [Google Scholar]
  4. Dittmer J. C., Lester R. L.. ( 1964; ). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. . J Lipid Res 5:, 126–127.[PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Guindon S., Gascuel O.. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  7. Heuchert A., Glöckner F. O., Amann R., Fischer U.. ( 2004; ). Psychrobacter nivimaris sp. nov., a heterotrophic bacterium attached to organic particles isolated from the South Atlantic (Antarctica). . Syst Appl Microbiol 27:, 399–406. [CrossRef] [PubMed]
    [Google Scholar]
  8. Juni E., Heym G. A.. ( 1986; ). Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of gram-negative, aerobic, oxidase-positive coccobacilli. . Int J Syst Bacteriol 36:, 388–391. [CrossRef]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  11. Leifson E.. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  12. Marmur J.. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  13. Maruyama A., Honda D., Yamamoto H., Kitamura K., Higashihara T.. ( 2000; ). Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov.. Int J Syst Evol Microbiol 50:, 835–846. [CrossRef] [PubMed]
    [Google Scholar]
  14. Matsuyama H., Hirabayashi T., Kasahara H., Minami H., Hoshino T., Yumoto I.. ( 2006; ). Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. . Int J Syst Evol Microbiol 56:, 2883–2886. [CrossRef] [PubMed]
    [Google Scholar]
  15. Matsuyama H., Minami H., Kasahara H., Kato Y., Murayama M., Yumoto I.. ( 2013; ). Pseudoalteromonas arabiensis sp. nov., a marine polysaccharide-producing bacterium. . Int J Syst Evol Microbiol 63:, 1805–1809. [CrossRef] [PubMed]
    [Google Scholar]
  16. Matsuyama H., Sawazaki K., Minami H., Kasahara H., Horikawa K., Yumoto I.. ( 2014; ). Pseudoalteromonas shioyasakiensis sp. nov., a marine polysaccharide-producing bacterium. . Int J Syst Evol Microbiol 64:, 101–106. [CrossRef] [PubMed]
    [Google Scholar]
  17. Nishijima M., Araki-Sakai M., Sano H.. ( 1997; ). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  18. Rzhetsky A., Nei M.. ( 1993; ). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10:, 1073–1095.[PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Shivaji S., Reddy G. S. N., Suresh K., Gupta P., Chintalapati S., Schumann P., Stackebrandt E., Matsumoto G. I.. ( 2005; ). Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. nov., from Antarctica. . Int J Syst Evol Microbiol 55:, 757–762. [CrossRef] [PubMed]
    [Google Scholar]
  21. Tamaoka J., Komagata K.. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  22. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013; ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  25. Yoon J.-H., Lee C.-H., Kang S. J., Oh T. K.. ( 2005; ). Psychrobacter celer sp. nov., isolated from sea water of the South Sea in Korea. . Int J Syst Evol Microbiol 55:, 1885–1890. [CrossRef] [PubMed]
    [Google Scholar]
  26. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K.. ( 2001; ). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. . Int J Syst Evol Microbiol 51:, 349–355.[PubMed]
    [Google Scholar]
  27. Yumoto I., Hirota K., Kimoto H., Nodasaka Y., Matsuyama H., Yoshimune K.. ( 2010; ). Psychrobacter piscatorii sp. nov., a psychrotolerant bacterium exhibiting high catalase activity isolated from an oxidative environment. . Int J Syst Evol Microbiol 60:, 205–208. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000118
Loading
/content/journal/ijsem/10.1099/ijs.0.000118
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error