1887

Abstract

A re-evaluation of the taxonomic position of two strains, 1383 and 2249, isolated from poppy seeds and tea leaves, which had been identified as (formerly ), was carried out. The analysis included phenotypic characterization, 16S rRNA gene sequencing, multilocus sequence analysis (MLSA) of five housekeeping genes (, , , and ; 2034 bp) and ribosomal MLSA (53 loci; 22 511 bp). 16S rRNA gene sequence analysis and MLSA showed that the strains formed an independent phylogenetic lineage, with LMG 23730 as the closest neighbour. Average nucleotide identity analysis and phenotypic analysis confirmed that these strains represent a novel species, for which the name sp. nov. is proposed. The type strain is 1383 ( = NCTC 14934 = CECT 8567 = LMG 28204). An emended description of is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000108
2015-04-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1335.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000108&mimeType=html&fmt=ahah

References

  1. Baldwin A., Loughlin M., Caubilla-Barron J., Kucerova E., Manning G., Dowson C., Forsythe S.. ( 2009; ). Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. . BMC Microbiol 9:, 223. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brady C., Cleenwerck I., Venter S., Coutinho T., De Vos P.. ( 2013; ). Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. . Syst Appl Microbiol 36:, 309–319. [CrossRef] [PubMed]
    [Google Scholar]
  3. BSAC. ( 2014; ). BSAC Methods for Antimicrobial Susceptibility Testing, version 13. http://bsac.org.uk/wp-content/uploads/2014/06/BSAC-disc-susceptibility-testing-method-June-2014.pdf
  4. Caubilla-Barron J., Hurrell E., Townsend S., Cheetham P., Loc-Carrillo C., Fayet O., Prère M.-F., Forsythe S. J.. ( 2007; ). Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France. . J Clin Microbiol 45:, 3979–3985. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chun J., Rainey F. A.. ( 2014; ). Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. . Int J Syst Evol Microbiol 64:, 316–324. [CrossRef] [PubMed]
    [Google Scholar]
  6. FAO/WHO. ( 2008; ). Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formula. Microbiological Risk Assessment Series, no. 15. Geneva: World Health Organization. http://www.who.int/foodsafety/publications/micro/mra_followup/en/
  7. Iversen C., Waddington M., On S. L. W., Forsythe S.. ( 2004; ). Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter species. . J Clin Microbiol 42:, 5368–5370. [CrossRef] [PubMed]
    [Google Scholar]
  8. Iversen C., Lancashire L., Waddington M., Forsythe S., Ball G.. ( 2006; a). Identification of Enterobacter sakazakii from closely related species: the use of artificial neural networks in the analysis of biochemical and 16S rDNA data. . BMC Microbiol 6:, 28. [CrossRef] [PubMed]
    [Google Scholar]
  9. Iversen C., Waddington M., Farmer J. J. III, Forsythe S. J.. ( 2006; b). The biochemical differentiation of Enterobacter sakazakii genotypes. . BMC Microbiol 6:, 94. [CrossRef] [PubMed]
    [Google Scholar]
  10. Iversen C., Lehner A., Mullane N., Bidlas E., Cleenwerck I., Marugg J., Fanning S., Stephan R., Joosten H.. ( 2007; ). The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. . BMC Evol Biol 7:, 64. [CrossRef] [PubMed]
    [Google Scholar]
  11. Iversen C., Mullane N., McCardell B., Tall B. D., Lehner A., Fanning S., Stephan R., Joosten H.. ( 2008; ). Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov.. Int J Syst Evol Microbiol 58:, 1442–1447. [CrossRef] [PubMed]
    [Google Scholar]
  12. Jackson E. E., Sonbol H., Masood N., Forsythe S. J.. ( 2014; ). Genotypic and phenotypic characteristics of Cronobacter species, with particular attention to the newly reclassified species Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis. . Food Microbiol 44:, 226–235. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jolley K. A., Maiden M. C. J.. ( 2010; ). BIGSdb: scalable analysis of bacterial genome variation at the population level. . BMC Bioinformatics 11:, 595. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jolley K. A., Chan M.-S., Maiden M. C. J.. ( 2004; ). mlstdbNet – distributed multi-locus sequence typing (MLST) databases. . BMC Bioinformatics 5:, 86. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jolley K. A., Bliss C. M., Bennett J. S., Bratcher H. B., Brehony C., Colles F. M., Wimalarathna H., Harrison O. B., Sheppard S. K. et al. ( 2012; ). Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. . Microbiology 158:, 1005–1015. [CrossRef] [PubMed]
    [Google Scholar]
  16. Joseph S., Forsythe S. J.. ( 2012; ). Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. . Front Microbiol 3:, 397. [CrossRef] [PubMed]
    [Google Scholar]
  17. Joseph S., Sonbol H., Hariri S., Desai P., McClelland M., Forsythe S. J.. ( 2012; a). Diversity of the Cronobacter genus as revealed by multilocus sequence typing. . J Clin Microbiol 50:, 3031–3039. [CrossRef] [PubMed]
    [Google Scholar]
  18. Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M. J., Forsythe S. J.. ( 2012; b). Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. . Int J Syst Evol Microbiol 62:, 1277–1283. [CrossRef] [PubMed]
    [Google Scholar]
  19. Joseph S., Desai P., Ji Y., Cummings C. A., Shih R., Degoricija L., Rico A., Brzoska P., Hamby S. E. et al. ( 2012; c). Comparative analysis of genome sequences covering the seven Cronobacter species. . PLoS ONE 7:, e49455. [CrossRef] [PubMed]
    [Google Scholar]
  20. Joseph S., Hariri S., Forsythe S. J.. ( 2013; ). Lack of continuity between Cronobacter biotypes and species as determined using multilocus sequence typing. . Mol Cell Probes 27:, 137–139. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim M., Oh H.-S., Park S. C., Chun J.. ( 2014; ). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64:, 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kimura M.. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  23. Konstantinidis K. T., Tiedje J. M.. ( 2005; ). Towards a genome-based taxonomy for prokaryotes. . J Bacteriol 187:, 6258–6264. [CrossRef] [PubMed]
    [Google Scholar]
  24. Masood N., Jackson E., Moore K., Farbos A., Paszkiewicz K., Dickins B., McNally A., Forsythe S.. ( 2014; ). Draft genome sequence of “Candidatus Cronobacter colletis” NCTC 14934T, a new species in the genus Cronobacter. . Genome Announc 2:, e00585-14. [CrossRef] [PubMed]
    [Google Scholar]
  25. Qin Q.-L., Xie B.-B., Zhang X.-Y., Chen X.-L., Zhou B.-C., Zhou J., Oren A., Zhang Y.-Z.. ( 2014; ). A proposed genus boundary for the prokaryotes based on genomic insights. . J Bacteriol 196:, 2210–2215. [CrossRef] [PubMed]
    [Google Scholar]
  26. Richter M., Rosselló-Móra R.. ( 2009; ). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Stephan R., Van Trappen S., Cleenwerck I., Vancanneyt M., De Vos P., Lehner A.. ( 2007; ). Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. . Int J Syst Evol Microbiol 57:, 820–826. [CrossRef] [PubMed]
    [Google Scholar]
  29. Stephan R., Van Trappen S., Cleenwerck I., Iversen C., Joosten H., De Vos P., Lehner A.. ( 2008; ). Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. . Int J Syst Evol Microbiol 58:, 237–241. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stephan R., Grim C. J., Gopinath G. R., Mammel M. K., Sathyamoorthy V., Trach L. H., Chase H. R., Fanning S., Tall B. D.. ( 2014; ). Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. . Int J Syst Evol Microbiol 64:, 3402–3410. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  32. Townsend S. M., Hurrell E., Caubilla-Barron J., Loc-Carrillo C., Forsythe S. J.. ( 2008; ). Characterization of an extended-spectrum beta-lactamase Enterobacter hormaechei nosocomial outbreak, and other Enterobacter hormaechei misidentified as Cronobacter (Enterobacter) sakazakii. . Microbiology 154:, 3659–3667. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000108
Loading
/content/journal/ijsem/10.1099/ijs.0.000108
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error