1887

Abstract

A novel anaerobic, mesophilic, slightly halophilic sulfate-reducing bacterium, designated strain Khaled BD4, was isolated from waters of a Tunisian thermal spring. Cells were vibrio-shaped or sigmoids (5–7×1–1.5 µm) and occurred singly or in pairs. Strain Khaled BD4 was Gram-stain-negative, motile and non-sporulated. It grew at 25–45 °C (optimum 37 °C), at pH 5.5–8.3 (optimum pH 7.0) and with 0.5–8 % NaCl (optimum 3 %). It required vitamins or yeast extract for growth. Sulfate, thiosulfate, sulfite and elemental sulfur served as terminal electron acceptors, but not fumarate, nitrate or nitrite. Strain Khaled BD4 utilized H in the presence of 2 mM acetate (carbon source), but also lactate, formate, pyruvate and fumarate in the presence of sulfate. Lactate was incompletely oxidized to acetate. Amongst substrates used, only pyruvate was fermented. Desulfoviridin and -type cytochrome were present. The G+C content of the DNA was 54.6 mol%. The main fatty acids were anteisoC, iso-C, iso-C and iso-C. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Khaled BD4 had DSM 4123 (96.7 % similarity) as its closest phylogenetic relative. On the basis of 16S rRNA gene sequence comparisons together with genetic and physiological characteristics, strain Khaled BD4 is assigned to a novel bacterial species, for which the name sp. nov. is proposed. The type strain is Khaled BD4 ( = DSM 28904 = JCM 30146).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000088
2015-04-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1256.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000088&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. ( 1979 ). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43, 260296.[PubMed]
    [Google Scholar]
  3. Barton L. L., Fardeau M.-L., Fauque G. D. ( 2014 ). Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. . In The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment, pp. 237277. Edited by Kroneck P. M. H., Sosa Torres M. E. . Dordrecht:: Springer Science and Business Media;. [CrossRef]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. ( 1977 ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81, 461466. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cord-Ruwisch R. ( 1985 ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate reducing bacteria. . J Microbiol Methods 4, 3336. [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Edgar R. C. ( 2004 ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32, 17921797. [CrossRef] [PubMed]
    [Google Scholar]
  8. Esnault G., Caumette P., Garcia J.-L. ( 1988 ). Characterization of Desulfovibrio giganteus sp. nov., a sulfate reducing bacterium isolated from a brackish coastal lagoon. . Syst Appl Microbiol 10, 147151. [CrossRef]
    [Google Scholar]
  9. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. ( 1997 ). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. . Int J Syst Bacteriol 47, 10131019. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. ( 2000 ). Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. . Int J Syst Evol Microbiol 50, 21412149. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fauque G. D., Barton L. L. ( 2012 ). Haemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes. . In Advances in Microbial Physiology, vol. 60, pp. 190. Edited by Poole R. K. . Burlington:: Academic Press, Elsevier Limited;. [CrossRef]
    [Google Scholar]
  12. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  13. Fourré E., Di Napoli R., Aiuppa A., Parello F., Gaubi E., Jean-Baptiste P., Allard P., Calabrese S., Ben Mamou A. ( 2011 ). Regional variations in the chemical and helium–carbon isotope composition of geothermal fluids across Tunisia. . Chem Geol 288, 6785. [CrossRef]
    [Google Scholar]
  14. Haouari O., Fardeau M. L., Cayol J. L., Casiot C., Elbaz-Poulichet F., Hamdi M., Joseph M., Ollivier B. ( 2008 a). Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. . Int J Syst Evol Microbiol 58, 25292535. [CrossRef] [PubMed]
    [Google Scholar]
  15. Haouari O., Fardeau M. L., Cayol J. L., Fauque G., Casiot C., Elbaz-Poulichet F., Hamdi M., Ollivier B. ( 2008 b). Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring. . Syst Appl Microbiol 31, 3842. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hungate R. E. ( 1969 ). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B, 117132. [CrossRef]
    [Google Scholar]
  17. Huß V. A. R., Festl H., Schleifer K. H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [CrossRef] [PubMed]
    [Google Scholar]
  18. Khelifi N., Ben Romdhane E., Hedi A., Postec A., Fardeau M.-L., Hamdi M., Tholozan J.-L., Ollivier B., Hirschler-Réa A. ( 2010 ). Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia. . Extremophiles 14, 297304. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kuykendall L. D., Roy M. A., O’Neil J. J., Devine T. E. ( 1988 ). Fatty acids, antibiotic resistance, and desoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38, 358361. [CrossRef]
    [Google Scholar]
  20. Macfarlane G. T., Cummings J. H., Macfarlane S. ( 2007 ). Sulphate-reducing bacteria and the human large intestine. . In Sulphate-reducing Bacteria. Environmental and Engineered Systems, pp. 503521. Edited by Barton L. L., Hamilton W. A. . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  21. Meddeb M. N. . ( 1993 ). Potentialités géothermiques de la Tunisie septentrionale. PhD Thesis, Laboratoire Hydrogéologie – Géothermie, Univ. Tunis II F.S.T. et E.N.I.S.
  22. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [CrossRef]
    [Google Scholar]
  23. Miller L. T. ( 1982 ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16, 584586.[PubMed]
    [Google Scholar]
  24. Moura J. J. G., Gonzalez P., Moura I., Fauque G. ( 2007 ). Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria. . In Sulphate-reducing Bacteria. Environmental and Engineered Systems, pp. 241264. Edited by Barton L. L., Hamilton W. A. . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  25. Ollivier B., Cayol J.-L., Fauque G. ( 2007 ). Sulphate-reducing bacteria from oil field. environments and deep-sea hydrothermal vents. . In Sulphate-reducing Bacteria. Environmental and Engineered Systems, pp. 305328. Edited by Barton L. L., Hamilton W. A. . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  26. Sadki O. ( 1998 ). Etude de systèmes hydrothermaux du Nord de la Tunisie. Géochimie des interactions eaux-roches et circulation hydrothermale. PhD thesis, Laboratoire de géochimie et géologie de l’environnement, Univ. Tunis II F.S.T. et E.N.I.S.
  27. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  28. Sayeh R., Birrien J.-L., Alain K., Barbier G., Hamdi M., Prieur D. ( 2010 ). Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. . Extremophiles 14, 501514. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K., Nei M., Kumar S. ( 2004 ). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101, 1103011035. [CrossRef]
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013 ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30, 27252729. [CrossRef] [PubMed]
    [Google Scholar]
  31. Widdel F., Pfennig N. ( 1981 ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov.. Arch Microbiol 129, 395400. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000088
Loading
/content/journal/ijsem/10.1099/ijs.0.000088
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error