1887

Abstract

A novel anaerobic, mesophilic, slightly halophilic sulfate-reducing bacterium, designated strain Khaled BD4, was isolated from waters of a Tunisian thermal spring. Cells were vibrio-shaped or sigmoids (5–7×1–1.5 µm) and occurred singly or in pairs. Strain Khaled BD4 was Gram-stain-negative, motile and non-sporulated. It grew at 25–45 °C (optimum 37 °C), at pH 5.5–8.3 (optimum pH 7.0) and with 0.5–8 % NaCl (optimum 3 %). It required vitamins or yeast extract for growth. Sulfate, thiosulfate, sulfite and elemental sulfur served as terminal electron acceptors, but not fumarate, nitrate or nitrite. Strain Khaled BD4 utilized H in the presence of 2 mM acetate (carbon source), but also lactate, formate, pyruvate and fumarate in the presence of sulfate. Lactate was incompletely oxidized to acetate. Amongst substrates used, only pyruvate was fermented. Desulfoviridin and -type cytochrome were present. The G+C content of the DNA was 54.6 mol%. The main fatty acids were anteisoC, iso-C, iso-C and iso-C. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Khaled BD4 had DSM 4123 (96.7 % similarity) as its closest phylogenetic relative. On the basis of 16S rRNA gene sequence comparisons together with genetic and physiological characteristics, strain Khaled BD4 is assigned to a novel bacterial species, for which the name sp. nov. is proposed. The type strain is Khaled BD4 ( = DSM 28904 = JCM 30146).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000088
2015-04-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1256.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000088&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Balch W. E. , Fox G. E. , Magrum L. J. , Woese C. R. , Wolfe R. S. . ( 1979; ). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  3. Barton L. L. , Fardeau M.-L. , Fauque G. D. . ( 2014; ). Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. . In The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment, pp. 237–277. Edited by Kroneck P. M. H. , Sosa Torres M. E. . . Dordrecht:: Springer Science and Business Media;. [CrossRef]
    [Google Scholar]
  4. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cord-Ruwisch R. . ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate reducing bacteria. . J Microbiol Methods 4:, 33–36. [CrossRef]
    [Google Scholar]
  6. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Edgar R. C. . ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  8. Esnault G. , Caumette P. , Garcia J.-L. . ( 1988; ). Characterization of Desulfovibrio giganteus sp. nov., a sulfate reducing bacterium isolated from a brackish coastal lagoon. . Syst Appl Microbiol 10:, 147–151. [CrossRef]
    [Google Scholar]
  9. Fardeau M.-L. , Ollivier B. , Patel B. K. C. , Magot M. , Thomas P. , Rimbault A. , Rocchiccioli F. , Garcia J.-L. . ( 1997; ). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. . Int J Syst Bacteriol 47:, 1013–1019. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fardeau M.-L. , Magot M. , Patel B. K. C. , Thomas P. , Garcia J.-L. , Ollivier B. . ( 2000; ). Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. . Int J Syst Evol Microbiol 50:, 2141–2149. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fauque G. D. , Barton L. L. . ( 2012; ). Haemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes. . In Advances in Microbial Physiology, vol. 60, pp. 1–90. Edited by Poole R. K. . . Burlington:: Academic Press, Elsevier Limited;. [CrossRef]
    [Google Scholar]
  12. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  13. Fourré E. , Di Napoli R. , Aiuppa A. , Parello F. , Gaubi E. , Jean-Baptiste P. , Allard P. , Calabrese S. , Ben Mamou A. . ( 2011; ). Regional variations in the chemical and helium–carbon isotope composition of geothermal fluids across Tunisia. . Chem Geol 288:, 67–85. [CrossRef]
    [Google Scholar]
  14. Haouari O. , Fardeau M. L. , Cayol J. L. , Casiot C. , Elbaz-Poulichet F. , Hamdi M. , Joseph M. , Ollivier B. . ( 2008; a). Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. . Int J Syst Evol Microbiol 58:, 2529–2535. [CrossRef] [PubMed]
    [Google Scholar]
  15. Haouari O. , Fardeau M. L. , Cayol J. L. , Fauque G. , Casiot C. , Elbaz-Poulichet F. , Hamdi M. , Ollivier B. . ( 2008; b). Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring. . Syst Appl Microbiol 31:, 38–42. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hungate R. E. . ( 1969; ). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  17. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  18. Khelifi N. , Ben Romdhane E. , Hedi A. , Postec A. , Fardeau M.-L. , Hamdi M. , Tholozan J.-L. , Ollivier B. , Hirschler-Réa A. . ( 2010; ). Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia. . Extremophiles 14:, 297–304. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kuykendall L. D. , Roy M. A. , O’Neil J. J. , Devine T. E. . ( 1988; ). Fatty acids, antibiotic resistance, and desoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  20. Macfarlane G. T. , Cummings J. H. , Macfarlane S. . ( 2007; ). Sulphate-reducing bacteria and the human large intestine. . In Sulphate-reducing Bacteria. Environmental and Engineered Systems, pp. 503–521. Edited by Barton L. L. , Hamilton W. A. . . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  21. Meddeb M. N . . ( 1993; ). Potentialités géothermiques de la Tunisie septentrionale. PhD Thesis, Laboratoire Hydrogéologie – Géothermie, Univ. Tunis II F.S.T. et E.N.I.S.
  22. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  23. Miller L. T. . ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  24. Moura J. J. G. , Gonzalez P. , Moura I. , Fauque G. . ( 2007; ). Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria. . In Sulphate-reducing Bacteria. Environmental and Engineered Systems, pp. 241–264. Edited by Barton L. L. , Hamilton W. A. . . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  25. Ollivier B. , Cayol J.-L. , Fauque G. . ( 2007; ). Sulphate-reducing bacteria from oil field. environments and deep-sea hydrothermal vents. . In Sulphate-reducing Bacteria. Environmental and Engineered Systems, pp. 305–328. Edited by Barton L. L. , Hamilton W. A. . . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  26. Sadki O. . ( 1998; ). Etude de systèmes hydrothermaux du Nord de la Tunisie. Géochimie des interactions eaux-roches et circulation hydrothermale. PhD thesis, Laboratoire de géochimie et géologie de l’environnement, Univ. Tunis II F.S.T. et E.N.I.S.
  27. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Sayeh R. , Birrien J.-L. , Alain K. , Barbier G. , Hamdi M. , Prieur D. . ( 2010; ). Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. . Extremophiles 14:, 501–514. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K. , Nei M. , Kumar S. . ( 2004; ). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035.[CrossRef]
    [Google Scholar]
  30. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013; ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  31. Widdel F. , Pfennig N. . ( 1981; ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov.. Arch Microbiol 129:, 395–400. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000088
Loading
/content/journal/ijsem/10.1099/ijs.0.000088
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error