1887

Abstract

The species was isolated from nodules and included in the Approved Lists of Bacterial Names in 1980. Nevertheless, on the basis of the analysis of the type strain of this species available in DSMZ, DSM 30140, whose 16S rRNA gene was identical to that of the type strain of , was considered a later synonym of this species. In this study we confirmed that the strain DSM 30140 belongs to the species , but also that it cannot be the original strain of because this species effectively nodulated whereas strain DSM 30140 was able to nodulate soybean but not . Since the original type strain of was deposited into the USDA collection by L. W. Erdman under the accession number USDA 3051 we analysed the taxonomic status of this strain showing that although it belongs to the genus instead of genus , it is phylogenetically distant from and closely related to . The type strains USDA 3051 and BTA-1 share 16S rRNA, and gene sequences with similarities of 99.8 %, 96.5 % and 97.1 %, respectively. They presented a DNA–DNA hybridization value of 36 % and also differed in phenotypic characteristics and slightly in the proportions of some fatty acids. Therefore we propose the reclassification of the species as comb. nov. The type strain is USDA 3051 ( = CECT 8630 = LMG 28514).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000082
2015-04-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1213.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000082&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chahboune R. , Carro L. , Peix A. , Barrijal S. , Velázquez E. , Bedmar E. J. . ( 2011; ). Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus . . Int J Syst Evol Microbiol 61:, 2922–2927. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chahboune R. , Carro L. , Peix A. , Ramírez-Bahena M. H. , Barrijal S. , Velázquez E. , Bedmar E. J. . ( 2012; ). Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. . Syst Appl Microbiol 35:, 302–305. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chun J. , Goodfellow M. . ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45:, 240–245. [CrossRef] [PubMed]
    [Google Scholar]
  5. Delamuta J. R. , Ribeiro R. A. , Ormeño-Orrillo E. , Melo I. S. , Martínez-Romero E. , Hungria M. . ( 2013; ). Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. . Int J Syst Evol Microbiol 63:, 3342–3351. [CrossRef] [PubMed]
    [Google Scholar]
  6. Durán D. , Rey L. , Mayo J. , Zúñiga-Dávila D. , Imperial J. , Ruiz-Argüeso T. , Martínez-Romero E. , Ormeño-Orrillo E. . ( 2014; ). Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. . Int J Syst Evol Microbiol 64:, 2072–2078. [CrossRef] [PubMed]
    [Google Scholar]
  7. Eckhardt M. M. , Baldwin I. L. , Fred E. B. . ( 1931; ). Studies of the root-nodule organism of Lupinus . . J Bacteriol 21:, 273–285.[PubMed]
    [Google Scholar]
  8. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  9. Guerrouj K. , Ruíz-Díez B. , Chahboune R. , Ramírez-Bahena M. H. , Abdelmoumen H. , Quiñones M. A. , El Idrissi M. M. , Velázquez E. , Fernández-Pascual M. et al. ( 2013; ). Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma . . Syst Appl Microbiol 36:, 218–223. [CrossRef] [PubMed]
    [Google Scholar]
  10. Jordan D. C. . ( 1982; ). Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. . Int J Syst Bacteriol 32:, 136–139. [CrossRef]
    [Google Scholar]
  11. Jordan D. C. . ( 1984; ). Family III Rhizobiaceae . . In Bergey’s Manual of Systematic Bacteriology, vol. I, pp. 234–242. Edited by Krieg N. R. , Holt J. G. . . Baltimore, MD:: Williams and Wilkins;.
    [Google Scholar]
  12. Jordan D. C. , Allen O. N. . ( 1974; ). Family III. Rhizobiaceae Conn, 1938. . In Bergey’s Manual of Determinative Bacteriology, , 8th edn., pp. 261–264. Edited by Buchanan R. E. , Gibbons N. E. . . Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  13. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721.[PubMed] [CrossRef]
    [Google Scholar]
  14. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kirchner O. . ( 1896; ). Die Wurzelknöllchen der Sojabohne. . Beiträge zur Biologie der Pflanzen 7:, 213–224.
    [Google Scholar]
  16. Lu J. K. , Dou Y. J. , Zhu Y. J. , Wang S. K. , Sui X. H. , Kang L. H. . ( 2014; ). Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. . Int J Syst Evol Microbiol 64:, 1900–1905. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mandel M. , Marmur J. . ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  18. Menna P. , Barcellos F. G. , Hungria M. . ( 2009; ). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. . Int J Syst Evol Microbiol 59:, 2934–2950. [CrossRef] [PubMed]
    [Google Scholar]
  19. Peix A. , Ramírez-Bahena M. H. , Velázquez E. , Bedmar E. J. . ( 2015; ). Bacterial associations with legumes. . Crit Rev Plant Sci 34:, 17–42. [CrossRef]
    [Google Scholar]
  20. Ramírez-Bahena M. H. , Peix A. , Rivas R. , Camacho M. , Rodríguez-Navarro D. N. , Mateos P. F. , Martínez-Molina E. , Willems A. , Velázquez E. . ( 2009; ). Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus . . Int J Syst Evol Microbiol 59:, 1929–1934. [CrossRef] [PubMed]
    [Google Scholar]
  21. Rivas R. , García-Fraile P. , Mateos P. F. , Martínez-Molina E. , Velázquez E. . ( 2007; ). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . . Lett Appl Microbiol 44:, 181–187. [CrossRef] [PubMed]
    [Google Scholar]
  22. Rogers J. S. , Swofford D. L. . ( 1998; ). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. . Syst Biol 47:, 77–89. [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N. , Nei M. . ( 1987; ). A neighbour-joining method: a new method for reconstructing phylogenetics trees. . Mol Biol Evol 44:, 406–425.
    [Google Scholar]
  24. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  25. Schroeter J. . ( 1886; ). Schizomycetes. . In: Kryptogamenflora von Schlesien, vol. 3, pp. 1–-814. Edited by Cohn F. . . Breslau:: J. U. Kern;.
    [Google Scholar]
  26. Skerman V. B. D. , McGowan V. , Sneath P. H. A. . ( 1980; ). Approved lists of bacterial names. . Int J Syst Bacteriol 30:, 225–420. [CrossRef]
    [Google Scholar]
  27. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  28. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  29. Velázquez E. , Valverde A. , Rivas R. , Gomis V. , Peix A. , Gantois I. , Igual J. M. , León-Barrios M. , Willems A. et al. ( 2010; ). Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium . . Antonie van Leeuwenhoek 97:, 363–376. [CrossRef] [PubMed]
    [Google Scholar]
  30. Vincent J. M. . ( 1970; ). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 1–13. Edited by Vincent J. M. . . Oxford:: Blackwell Scientific;.
    [Google Scholar]
  31. Vinuesa P. , León-Barrios M. , Silva C. , Willems A. , Jarabo-Lorenzo A. , Pérez-Galdona R. , Werner D. , Martínez-Romero E. . ( 2005; ). Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. . Int J Syst Evol Microbiol 55:, 569–575. [CrossRef] [PubMed]
    [Google Scholar]
  32. Vinuesa P. , Rojas-Jiménez K. , Contreras-Moreira B. , Mahna S. K. , Prasad B. N. , Moe H. , Selvaraju S. B. , Thierfelder H. , Werner D. . ( 2008; ). Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent. . Appl Environ Microbiol 74:, 6987–6996. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wang J. Y. , Wang R. , Zhang Y. M. , Liu H. C. , Chen W. F. , Wang E. T. , Sui X. H. , Chen W. X. . ( 2013; ). Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. . Int J Syst Evol Microbiol 63:, 616–624. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  35. Willems A. , Doignon-Bourcier F. , Goris J. , Coopman R. , de Lajudie P. , De Vos P. , Gillis M. . ( 2001; ). DNA-DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000082
Loading
/content/journal/ijsem/10.1099/ijs.0.000082
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error