1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped and motile bacterium, designated THG-DD7, was isolated from tomato plant rhizosphere soil. Strain THG-DD7 grew optimally at 25–30 °C, at pH 7.0–7.5 and in the presence of 0.5 % (w/v) NaCl. According to the results of 16S rRNA gene sequence comparisons, strain THG-DD7 was most closely related to GR24-2 (98.2 %), LnR5-47 (98.0 %), DCY45 (97.9 %), GP18-1 (97.9 %) and Gsoil 3046 (97.7 %). The DNA G+C content was 65.2 mol%. In DNA–DNA hybridization, the DNA relatedness levels between strain THG-DD7 and its closest phylogenetically neighbours were below 40.0 %. The predominant isoprenoid quinone was ubiquinone Q-8. The major polar lipids were diphosphatidylglycerol, phosphtidylethanolamine, phosphatidyl--methylethanolamine and phosphatidylglycerol. The major fatty acids were iso-C, iso-C, iso-C, anteiso-C and iso-Cω9 and/or C 10-methyl (summed feature 9). These data supported the affiliation of strain THG-DD7 to the genus . The results of physiological and biochemical tests enabled strain THG-DD7 to be differentiated genotypically and phenotypically from the species of the genus with validly published names. Therefore, the novel isolate represents a novel species, for which the name sp. nov. is proposed. The type strain is THG-DD7 ( = KACC 17650 = JCM 19614).

Funding
This study was supported by the:
  • Rural Development Administration
  • Kyung Hee University
  • 20120596
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000077
2015-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1180.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000077&mimeType=html&fmt=ahah

References

  1. An D. S., Lee H. G., Lee S. T., Im W. T. ( 2009 ). Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 59, 691694. [View Article] [PubMed]
    [Google Scholar]
  2. Bui T. P. N., Kim Y. J., Kim H., Yang D. C. ( 2010 ). Rhodanobacter soli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60, 29352939. [View Article] [PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D. ( 1981 ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45, 316354.[PubMed]
    [Google Scholar]
  4. De Clercq D., Van Trappen S., Cleenwerck I., Ceustermans A., Swings J., Coosemans J., Ryckeboer J. ( 2006 ). Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. . Int J Syst Evol Microbiol 56, 17551759. [View Article] [PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [View Article]
    [Google Scholar]
  6. Felsenstein J. ( 1985 ). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  7. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41, 9598.
    [Google Scholar]
  8. Hiraishi A., Ueda Y., Ishihara J., Mori T. ( 1996 ). Comparative lipoquinone analysis of influent sewage and activated sludge by high–performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42, 457469. [View Article]
    [Google Scholar]
  9. Im W. T., Lee S. T., Yokota A. ( 2004 ). Rhodanobacter fulvus sp. nov., a β-galactosidase-producing gammaproteobacterium. . J Gen Appl Microbiol 50, 143147. [View Article] [PubMed]
    [Google Scholar]
  10. Jung H. M., Ten L. N., Kim K. H., An D. S., Im W. T., Lee S. T. ( 2009 ). Dyella ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 59, 460465. [View Article] [PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  12. Kim Y. S., Kim S. J., Anandham R., Weon H. Y., Kwon S. W. ( 2013 ). Rhodanobacter umsongensis sp. nov., isolated from a Korean ginseng field. . J Microbiol 51, 258261. [View Article] [PubMed]
    [Google Scholar]
  13. Kimura M. ( 1983 ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  14. Kumar S., Nei M., Dudley J., Tamura K. ( 2008 ). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9, 299306. [View Article] [PubMed]
    [Google Scholar]
  15. Lee C. S., Kim K. K., Aslam Z., Lee S. T. ( 2007 ). Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. . Int J Syst Evol Microbiol 57, 17751779. [View Article] [PubMed]
    [Google Scholar]
  16. Madhaiyan M., Poonquzhali S., Saravanan V. S., Kwon S. W. . ( 2014 ). Rhodanobacter glycinis sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizoplane of field-grown soybean. Int J Syst Evol Microbiol 64, 2023–2028.
  17. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high–performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  18. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. ( 1977 ). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27, 104117. [View Article]
    [Google Scholar]
  19. Minnikin D.-E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parleet J.-H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  20. Moore D. D., Dowhan D. ( 1995 ). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 211. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. . New York:: Wiley;.
    [Google Scholar]
  21. Nalin R., Simonet P., Vogel T. M., Normand P. ( 1999 ). Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. . Int J Syst Bacteriol 49, 1923. [View Article] [PubMed]
    [Google Scholar]
  22. Prakash O., Green S. J., Jasrotia P., Overholt W. A., Canion A., Watson D.-B., Brooks S. C., Kostka J. E. ( 2012 ). Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. . Int J Syst Evol Microbiol 62, 24572462. [View Article] [PubMed]
    [Google Scholar]
  23. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  24. Sasser M. . ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  25. Tamaoka J., Katayama–Fujiruma A., Kuraishi H. ( 1983 ). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54, 3136. [View Article]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  27. Wang L., An D. S., Kim S. G., Jin F. X., Lee S. T., Im W. T. ( 2011 ). Rhodanobacter panaciterrae sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 61, 30283032. [View Article] [PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  29. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. ( 1991 ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173, 697703.[PubMed]
    [Google Scholar]
  30. Weon H. Y., Kim B.-Y., Hong S. B., Jeon Y. A., Kwon S. W., Go S. J., Koo B. S. ( 2007 ). Rhodanobacter ginsengisoli sp. nov. and Rhodanobacter terrae sp. nov., isolated from soil cultivated with Korean ginseng. . Int J Syst Evol Microbiol 57, 28102813. [View Article] [PubMed]
    [Google Scholar]
  31. Woo S. G., Srinivasan S., Kim M. K., Lee M. ( 2012 ). Rhodanobacter caeni sp. nov., isolated from sludge from a sewage disposal plant. . Int J Syst Evol Microbiol 62, 28152821. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000077
Loading
/content/journal/ijsem/10.1099/ijs.0.000077
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error