1887

Abstract

Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome -oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit ()] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (-distance of 1.569, 85.84 % parsimony-informative sites) and COI (6.084, 82.14 %), followed by the 18S rRNA gene (0.139, 57.69 %), (0.120, 42.01 %) and UPA (0.050, 14.97 %), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of , and gathered in separate clades, and were paraphyletic with those of . Finally, UPA was too conserved to serve as a diatom barcode.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000076
2015-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1369.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000076&mimeType=html&fmt=ahah

References

  1. Adl S. M., Simpson A. G. B., Farmer M. A., Andersen R. A., Anderson O. R., Barta J. R., Bowser S. S., Brugerolle G. U. Y., Fensome R. A. et al. ( 2005; ). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. . J Eukaryot Microbiol 52:, 399–451. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alverson A. J.. ( 2008; ). Molecular systematics and the diatom species. . Protist 159:, 339–353. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alverson A. J., Cannone J. J., Gutell R. R., Theriot E. C.. ( 2006; ). The evolution of elongate shape in diatoms. . J Phycol 42:, 655–668. [CrossRef]
    [Google Scholar]
  4. Behnke A., Friedl T., Chepurnov V. A., Mann D. G.. ( 2004; ). Reproductive compatibility and rDNA sequence analyses in the Sellaphora pupula species complex (Bacillariophyta). . J Phycol 40:, 193–208. [CrossRef]
    [Google Scholar]
  5. Beszteri B., Ács É., Medlin L. K.. ( 2005; ). Ribosomal DNA sequence variation among sympatric strains of the Cyclotella meneghiniana complex (Bacillariophyceae) reveals cryptic diversity. . Protist 156:, 317–333. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bruder K., Medlin L. K.. ( 2007; ). Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. . Nova Hedwigia 85:, 331–352. [CrossRef]
    [Google Scholar]
  7. de Vere N., Rich T. C. G., Ford C. R., Trinder S. A., Long C., Moore C. W., Satterthwaite D., Davies H., Allainguillaume J. et al. ( 2012; ). DNA barcoding the native flowering plants and conifers of Wales. . PLoS ONE 7:, e37945. [CrossRef] [PubMed]
    [Google Scholar]
  8. Evans K. M., Wortley A. H., Mann D. G.. ( 2007; ). An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). . Protist 158:, 349–364. [CrossRef] [PubMed]
    [Google Scholar]
  9. Godhe A., McQuoid M. R., Karunasagar I., Karunasagar I., Rehnstam-Holm A. S.. ( 2006; ). Comparison of three common molecular tools for distinguishing among geographically separated clones of the diatom Skeletonema marinoi Sarno et Zingone (Bacillariophyceae). . J Phycol 42:, 280–291. [CrossRef]
    [Google Scholar]
  10. Guillard R. R. L.. ( 1975; ). Culture of phytoplankton for feeding marine invertebrates. . In Culture of Marine Invertebrate Animals, pp. 29–60. Edited by Smith W. L., Chanley M. H... New York:: Springer;. [CrossRef]
    [Google Scholar]
  11. Hamsher S. E., Evans K. M., Mann D. G., Poulíčková A., Saunders G. W.. ( 2011; ). Barcoding diatoms: exploring alternatives to COI-5P. . Protist 162:, 405–422. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hebert P. D., Cywinska A., Ball S. L., deWaard J. R.. ( 2003; ). Biological identifications through DNA barcodes. . Proc Biol Sci 270:, 313–321. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jung S. W., Han M.-S., Ki J.-S.. ( 2010; ). Molecular genetic divergence of the centric diatom Cyclotella and Discostella (Bacillariophyceae) revealed by nuclear ribosomal DNA comparisons. . J Appl Phycol 22:, 319–329. [CrossRef]
    [Google Scholar]
  14. Kooistra W. H., Medlin L. K.. ( 1996; ). Evolution of the diatoms (Bacillariophyta). IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. . Mol Phylogenet Evol 6:, 391–407. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kooistra W. H., Sarno D., Hernández-Becerril D. U., Assmy P., Di Prisco C., Montresor M.. ( 2010; ). Comparative molecular and morphological phylogenetic analyses of taxa in the Chaetocerotaceae (Bacillariophyta). . Phycologia 49:, 471–500. [CrossRef]
    [Google Scholar]
  16. Kress W. J., Erickson D. L.. ( 2008; ). DNA barcodes: genes, genomics, and bioinformatics. . Proc Natl Acad Sci U S A 105:, 2761–2762. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kucera H., Saunders G. W.. ( 2008; ). Assigning morphological variants of Fucus (Fucales, Phaeophyceae) in Canadian waters to recognized species using DNA barcoding. . Botany 86:, 1065–1079. [CrossRef]
    [Google Scholar]
  18. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007; ). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lee M. A., Faria D. G., Han M. S., Lee J., Ki J. S.. ( 2013; ). Evaluation of nuclear ribosomal RNA and chloroplast gene markers for the DNA taxonomy of centric diatoms. . Biochem Syst Ecol 50:, 163–174. [CrossRef]
    [Google Scholar]
  20. Lundholm N., Moestrup Ø., Kotaki Y., Hoef-Emden K., Scholin C., Miller P.. ( 2006; ). Inter- and intraspecific variation of the Pseudo-nitzschia delicatissima complex (Bacillariophyceae) illustrated by RNA probes, morphological data and phylogenetic analyses. . J Phycol 42:, 464–481. [CrossRef]
    [Google Scholar]
  21. Luo A., Qiao H., Zhang Y., Shi W., Ho S. Y., Xu W., Zhang A., Zhu C.. ( 2010; ). Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets. . BMC Evol Biol 10:, 242. [CrossRef] [PubMed]
    [Google Scholar]
  22. MacGillivary M. L., Kaczmarska I.. ( 2011; ). Survey of the efficacy of a short fragment of the rbcL gene as a supplemental DNA barcode for diatoms. . J Eukaryot Microbiol 58:, 529–536. [CrossRef] [PubMed]
    [Google Scholar]
  23. MacGillivary M. L., Kaczmarska I.. ( 2012; ). Genetic differentiation within the Paralia longispina (Bacillariophyta) species complex. . Botany 90:, 205–222. [CrossRef]
    [Google Scholar]
  24. Mann D., Droop S.. ( 1996; ). Biodiversity, biogeography and conservation of diatoms. . Hydrobiologia 336:, 19–32. [CrossRef]
    [Google Scholar]
  25. Medlin L. K., Kaczmarska I.. ( 2004; ). Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. . Phycologia 43:, 245–270. [CrossRef]
    [Google Scholar]
  26. Medlin L. K., Williams D., Sims P.. ( 1993; ). The evolution of the diatoms (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. . Eur J Phycol 28:, 261–275. [CrossRef]
    [Google Scholar]
  27. Medlin L. K., Kooistra W. H., Gersonde R., Wellbrock U.. ( 1996; ). Evolution of the diatoms (Bacillariophyta). II. Nuclear-encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. . Mol Biol Evol 13:, 67–75. [CrossRef] [PubMed]
    [Google Scholar]
  28. Medlin L. K., Kooistra W., Gersonde R., Sims P., Wellbrock U.. ( 1997; ). Is the origin of diatoms related to the end-Permian mass extinction?. Nova Hedwigia 65:, 1–11.
    [Google Scholar]
  29. Medlin L. K., Kooistra W. H. C. F., Schmid A. M.-M.. ( 2000; ). A review of the evolution of the diatoms – a total approach using molecules, morphology and geology. . In The Origin and Early Evolution of the Diatoms: Fossil, Molecular and Biogeographical Approaches, pp. 13–35. Edited by Witkowski A., Siemińska J... Kraków:: Władysław Szafer Institute of Botany, Polish Academy of Sciences;.
    [Google Scholar]
  30. Moniz M. B., Kaczmarska I.. ( 2009; ). Barcoding diatoms: is there a good marker?. Mol Ecol Resour 9: (Suppl. s1), 65–74. [CrossRef] [PubMed]
    [Google Scholar]
  31. Moniz M. B., Kaczmarska I.. ( 2010; ). Barcoding of diatoms: nuclear encoded ITS revisited. . Protist 161:, 7–34. [CrossRef] [PubMed]
    [Google Scholar]
  32. Moritz G., Paulsen M., Delker C., Picl S., Kumm S.. ( 2001; ). Identification of thrips using ITS-RFLP analysis. In Thrips and Tospoviruses: Proceedings of the 7th International Symposium on Thysanoptera, pp. 365–367. Edited by R. Marullo & L. Mound. Calabria, Italy, 2–7 July 2001.
  33. Posada D., Crandall K. A.. ( 1998; ). modeltest: testing the model of DNA substitution. . Bioinformatics 14:, 817–818. [CrossRef] [PubMed]
    [Google Scholar]
  34. Rambaut A.. ( 2013; ). FigTree. Available from http://tree.bio.ed.ac.uk/software/figtree/
  35. Ratnasingham S., Hebert P. D. N.. ( 2007; ). bold: the Barcode of Life Data System (http://www.barcodinglife.org). . Mol Ecol Notes 7:, 355–364. [CrossRef] [PubMed]
    [Google Scholar]
  36. Rogers S. O., Bendich A. J.. ( 1985; ). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. . Plant Mol Biol 5:, 69–76. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ronquist F., Huelsenbeck J. P.. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  38. Round F. E., Crawford R. M., Mann D. G.. ( 1990; ). The Diatoms. Biology and Morphology of the Genera. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  39. Saunders G. W.. ( 2005; ). Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. . Philos Trans R Soc Lond B Biol Sci 360:, 1879–1888. [CrossRef] [PubMed]
    [Google Scholar]
  40. Savolainen V., Cowan R. S., Vogler A. P., Roderick G. K., Lane R.. ( 2005; ). Towards writing the encyclopedia of life: an introduction to DNA barcoding. . Philos Trans R Soc Lond B Biol Sci 360:, 1805–1811. [CrossRef] [PubMed]
    [Google Scholar]
  41. Schoch C. L., Seifert K. A., Huhndorf S., Robert V., Spouge J. L., Levesque C. A., Chen W., Bolchacova E., Voigt K. et al. ( 2012; ). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. . Proc Natl Acad Sci U S A 109:, 6241–6246. [CrossRef] [PubMed]
    [Google Scholar]
  42. Seifert K. A.. ( 2009; ). Progress towards DNA barcoding of fungi. . Mol Ecol Resour 9: (Suppl. s1), 83–89. [CrossRef] [PubMed]
    [Google Scholar]
  43. Sherwood A. R., Presting G. G.. ( 2007; ). Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. . J Phycol 43:, 605–608. [CrossRef]
    [Google Scholar]
  44. Simonsen R.. ( 1972; ). Ideas for a more natural system of the centric diatoms. . Nova Hedwigia Beih 39:, 37–54.
    [Google Scholar]
  45. Simonsen R.. ( 1979; ). The diatom system: ideas on phylogeny. . Bacillaria 2:, 9–71.
    [Google Scholar]
  46. Sörhannus U.. ( 2004; ). Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU rRNA sequences. . Cladistics 20:, 487–497. [CrossRef]
    [Google Scholar]
  47. Sörhannus U.. ( 2007; ). A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. . Mar Micropaleontol 65:, 1–12. [CrossRef]
    [Google Scholar]
  48. Stern R. F., Andersen R. A., Jameson I., Küpper F. C., Coffroth M.-A., Vaulot D., Le Gall F., Véron B., Brand J. J. et al. ( 2012; ). Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. . PLoS ONE 7:, e42780. [CrossRef] [PubMed]
    [Google Scholar]
  49. Stevenson R. J., Pan Y., Van Dam H.. ( 2010; ). Assessing environmental conditions in rivers and streams with diatoms. . In The Diatoms: Applications for the Environmental and Earth Sciences, , 2nd edn., pp. 57–85. Edited by Smol J. P., Stoermer E. F... Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  50. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013; ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  51. Theriot E. C., Ashworth M., Ruck E., Nakov T., Jansen R. K.. ( 2010; ). A preliminary multigene phylogeny of the diatoms (Bacillariophyta): challenges for future research. . Plant Ecol Evol 143:, 278–296. [CrossRef]
    [Google Scholar]
  52. Trobajo R., Mann D. G., Clavero E., Evans K. M., Vanormelingen P., McGregor R. C.. ( 2010; ). The use of partial cox1, rbcL and LSU rDNA sequences for phylogenetics and species identification within the Nitzschia palea species complex (Bacillariophyceae). . Eur J Phycol 45:, 413–425. [CrossRef]
    [Google Scholar]
  53. Urbánková P., Veselá J.. ( 2013; ). DNA-barcoding: a case study in the diatom genus Frustulia (Bacillariophyceae). . Nova Hedwigia Beih 142:, 147–162.
    [Google Scholar]
  54. Vanormelingen P., Hegewald E., Braband A., Kitschke M., Friedl T., Sabbe K., Vyverman W.. ( 2007; ). The systematics of a small spineless Desmodesmus species, D. costato-granulatus (Sphaeropleales, Chlorophyceae), based on ITS2 rDNA sequence analyses and cell wall morphology. . J Phycol 43:, 378–396. [CrossRef]
    [Google Scholar]
  55. Vanormelingen P., Cottenie K., Michels E., Muylaert K., Vyverman W. et al. ( 2008; ). The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. . Freshw Biol 53:, 2170–2183.
    [Google Scholar]
  56. Von Dassow P., Petersen T. W., Chepurnov V. A., Armbrust E. V.. ( 2008; ). Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). . J Phycol 44:, 335–349. [CrossRef]
    [Google Scholar]
  57. Xia X., Xie Z.. ( 2001; ). dambe: software package for data analysis in molecular biology and evolution. . J Hered 92:, 371–373. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yool A., Tyrrell T.. ( 2003; ). Role of diatoms in regulating the ocean’s silicon cycle. . Global Biogeochem Cycles 17:, 1103. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000076
Loading
/content/journal/ijsem/10.1099/ijs.0.000076
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error