1887

Abstract

A yellow-pigmented bacterium, designated strain ZFGT-11, was isolated from roots of Jacq. collected from Taibai Mountain in Shaanxi Province, north-west China, and was subjected to a taxonomic study by using a polyphasic approach. Cells of strain ZFGT-11 were Gram-stain-negative, strictly aerobic rods that were surrounded by a thick capsule and were motile by means of a single polar flagellum. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain ZFGT-11 was a member of the genus and was closely related to KACC 16534 (97.6 % similarity), JCM 18825 (96.8 %), IFO 15499 (96.7 %) and DSM 4733 (96.6 %). The predominant respiratory quinone was ubiquinone-10 (Q-10) and the major cellular fatty acids were summed feature 8 (comprising Cω7 and/or Cω6), Cω6, C 2-OH, C and C 2-OH. The major polyamine of strain ZFGT-11 was -homospermidine. Phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, sphingoglycolipid, two unidentified aminoglycolipids, two unidentified phospholipids and two unidentified lipids were detected in the polar lipid profile. The DNA G+C content was 66.8 mol%. DNA–DNA relatedness for strain ZFGT-11 with respect to its closest phylogenetic relative KACC 16534 was 26.2±4.8 % (mean±). On the basis of data from the present polyphasic taxonomic study, strain ZFGT-11 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ZFGT-11 ( = CCTCC AB 2013306 = KCTC 32449 = LMG 27608).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000074
2015-04-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1160.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000074&mimeType=html&fmt=ahah

References

  1. An H. , Xu M. , Dai J. , Wang Y. , Cai F. , Qi H. , Peng F. , Fang C. . ( 2011; ). Sphingomonas xinjiangensis sp. nov., isolated from desert sand. . Int J Syst Evol Microbiol 61:, 1865–1869. [CrossRef] [PubMed]
    [Google Scholar]
  2. An D.-S. , Liu Q.-M. , Lee H.-G. , Jung M.-S. , Kim S.-C. , Lee S.-T. , Im W.-T. . ( 2013; ). Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov.. Int J Syst Evol Microbiol 63:, 496–501. [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse H.-J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  4. Busse H.-J. , Denner E. B. M. , Buczolits S. , Salkinoja-Salonen M. , Bennasar A. , Kämpfer P. . ( 2003; ). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . . Int J Syst Evol Microbiol 53:, 1253–1260. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen H. , Jogler M. , Rohde M. , Klenk H. P. , Busse H. J. , Tindall B. J. , Spröer C. , Overmann J. . ( 2012; ). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas . . Int J Syst Evol Microbiol 62:, 2835–2843. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cleenwerck I. , Vandemeulebroecke K. , Janssens D. , Swings J. . ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef] [PubMed]
    [Google Scholar]
  7. Doetsch R. N. . ( 1981; ). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerdhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Euzéby, J. P. (2014). List of bacterial names with standing in nomenclature: a folder available on the Internet. [Last full update 7 November 2014]. http://www.bacterio.cict.fr/
  9. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Fitch W. M. . ( 1971; ). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  13. Huang H. Y. , Li J. , Zhao G. Z. , Zhu W. Y. , Yang L. L. , Tang H. Y. , Xu L. H. , Li W. J. . ( 2012; ). Sphingomonas endophytica sp. nov., isolated from Artemisia annua L.. Int J Syst Evol Microbiol 62:, 1576–1580. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim B.-C. , Poo H. , Lee K. H. , Kim M. N. , Kwon O.-Y. , Shin K.-S. . ( 2012; a). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. . Int J Syst Evol Microbiol 62:, 55–60. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012; b). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim S.-J. , Moon J.-Y. , Lim J.-M. , Ahn J.-H. , Weon H.-Y. , Ahn T.-Y. , Kwon S.-W. . ( 2014; ). Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. . Int J Syst Evol Microbiol 64:, 926–932. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lane D. J. . ( 1991; ). 16S–23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 125–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  19. Lee J.-S. , Shin Y. K. , Yoon J.-H. , Takeuchi M. , Pyun Y.-R. , Park Y.-H. . ( 2001; ). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. . Int J Syst Evol Microbiol 51:, 1491–1498.[PubMed] [CrossRef]
    [Google Scholar]
  20. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Romanenko L. A. , Uchino M. , Frolova G. M. , Tanaka N. , Kalinovskaya N. I. , Latyshev N. , Mikhailov V. V. . ( 2007; ). Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. . Int J Syst Evol Microbiol 57:, 358–363. [CrossRef] [PubMed]
    [Google Scholar]
  22. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sasser M . . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  24. Schenkel E. , Berlaimont V. , Dubois J. , Helson-Cambier M. , Hanocq M. . ( 1995; ). Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. . J Chromatogr B Biomed Appl 668:, 189–197. [CrossRef] [PubMed]
    [Google Scholar]
  25. Son H.-M. , Kook M. C. , Tran H. T. H. , Kim K.-Y. , Park S.-Y. , Kim J.-H. , Yi T.-H. . ( 2014; ). Sphingomonas kyeonggiense sp. nov., isolated from soil of a ginseng field. . Antonie van Leeuwenhoek 105:, 791–797. [CrossRef] [PubMed]
    [Google Scholar]
  26. Takeuchi M. , Kawai F. , Shimada Y. , Yokota A. . ( 1993; ). Taxonomic study of polyethylene glycerol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov.. Syst Appl Microbiol 16:, 227–238. [CrossRef]
    [Google Scholar]
  27. Takeuchi M. , Sakane T. , Yanagi M. , Yamasato K. , Hamana K. , Yokota A. . ( 1995; ). Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov.. Int J Syst Bacteriol 45:, 334–341. [CrossRef] [PubMed]
    [Google Scholar]
  28. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed] [CrossRef]
    [Google Scholar]
  29. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  30. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tindall B. J. . ( 1990; a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  32. Tindall B. J. . ( 1990; b). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  33. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  34. Wilson K. . ( 1987; ). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 241–245. Edited by Ausubel F. M. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . . New York:: Greene Publishing and Wiley Interscience;.
    [Google Scholar]
  35. Xie C. H. , Yokota A. . ( 2003; ). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49:, 345–349. [CrossRef] [PubMed]
    [Google Scholar]
  36. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34:, 99–119. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yabuuchi E. , Kosako Y. , Fujiwara N. , Naka T. , Matsunaga I. , Ogura H. , Kobayashi K. . ( 2002; ). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . . Int J Syst Evol Microbiol 52:, 1485–1496. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yang D. C. , Im W. T. , Kim M. K. , Ohta H. , Lee S. T. . ( 2006; ). Sphingomonas soli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in the α-4 subgroup of the Proteobacteria . . Int J Syst Evol Microbiol 56:, 703–707. [CrossRef] [PubMed]
    [Google Scholar]
  39. Zhang L. , Wang Y. , Wei L. , Wang Y. , Shen X. , Li S. . ( 2013; ). Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus . . Int J Syst Evol Microbiol 63:, 3769–3776. [CrossRef] [PubMed]
    [Google Scholar]
  40. Zhang L. , Wei L. , Zhu L. , Li C. , Wang Y. , Shen X. . ( 2014; ). Pseudoxanthomonas gei sp. nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum . . Antonie van Leeuwenhoek 105:, 653–661. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000074
Loading
/content/journal/ijsem/10.1099/ijs.0.000074
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error