1887

Abstract

A novel actinomycete, designated strain A31, was isolated from the surface of weathered biotite in Susong, Anhui Province, China. The organism grew optimally at 30 °C, at pH 8.0 and with 1 % (w/v) NaCl. Strain A31 had A3α as the cell-wall peptidoglycan type and galactose, mannose and rhamnose as whole-cell sugars. Anteiso-C and anteiso-C were the major cellular fatty acids and MK-9(H) was the predominant respiratory quinone. In addition, the total polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylmonomethylethanolamine and four glycolipids. The genomic DNA G+C content of strain A31 was 70.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain A31 was related most closely to LC13 (98.3 % similarity), DSM 20127 (98.2 %), CW 59 (98.1 %), CW 108 (97.8 %), ‘ ’ MPKL 26 (97.3 %), LC10 (97.1 %) and ‘ ’ SYP-B575 (96.7 %). DNA–DNA hybridization studies with the new isolate showed relatedness values of 16.0–56.6 % with its six closest neighbours. Based on phenotypic, chemotaxonomic and phylogenetic analysis, strain A31 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is A31 ( = DSM 28245 = CCTCC AB 2014068).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000064
2015-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1133.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000064&mimeType=html&fmt=ahah

References

  1. Collins M. D. . ( 1985; ). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . . London:: Academic Press;.
    [Google Scholar]
  2. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ding L. , Hirose T. , Yokota A. . ( 2009; ). Four novel Arthrobacter species isolated from filtration substrate. . Int J Syst Evol Microbiol 59:, 856–862. [CrossRef] [PubMed]
    [Google Scholar]
  4. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Gordon R. E. , Barnett D. A. , Handerhan J. E. , Pang C. H.-N. . ( 1974; ). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  7. Huang Z. , Sheng X.-F. , Zhao F. , He L.-Y. , Huang J. , Wang Q. . ( 2012; ). Isoptericola nanjingensis sp. nov., a mineral-weathering bacterium. . Int J Syst Evol Microbiol 62:, 971–976. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kuhn D. A. , Starr M. P. . ( 1960; ). Arthrobacter atrocyaneus, n. sp., and its blue pigment. . Arch Mikrobiol 36:, 175–181. [CrossRef] [PubMed]
    [Google Scholar]
  11. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  12. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  13. Prabhu D. M. , Quadri S. R. , Cheng J. , Liu L. , Chen W. , Yang Y. , Hozzein W. N. , Lingappa K. , Li W.-J. . ( 2014; ). Sinomonas mesophila sp. nov., isolated from ancient fort soil. . J Antibiot (Tokyo) [Epub ahead of print]. [CrossRef] [PubMed]
    [Google Scholar]
  14. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  15. Schumann P. . ( 2011; ). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  16. Shen P. , Fan X. R. , Li G. W. . ( 1999; ). Experiment of Microbiology. Beijing:: Higher Education Press;.
    [Google Scholar]
  17. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  18. Staneck J. L. , Roberts G. D. . ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  19. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013; ). mega 6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  20. Timke M. , Wang-Lieu N. Q. , Altendorf K. , Lipski A. . ( 2005; ). Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. . Appl Environ Microbiol 71:, 6446–6452. [CrossRef] [PubMed]
    [Google Scholar]
  21. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  22. Wieser M. , Denner E. B. M. , Kämpfer P. , Schumann P. , Tindall B. , Steiner U. , Vybiral D. , Lubitz W. , Maszenan A. M. et al. ( 2002; ). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). . Int J Syst Evol Microbiol 52:, 629–637.[PubMed] [CrossRef]
    [Google Scholar]
  23. Zhang M.-Y. , Xie J. , Zhang T.-Y. , Xu H. , Cheng J. , Li S.-H. , Li W. J. , Zhang Y. X. . ( 2014; ). Sinomonas notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng . . Antonie van Leeuwenhoek 106:, 827–835. [CrossRef] [PubMed]
    [Google Scholar]
  24. Zhou Y. , Wei W. , Wang X. , Lai R. . ( 2009; ). Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus . . Int J Syst Evol Microbiol 59:, 259–263. [CrossRef] [PubMed]
    [Google Scholar]
  25. Zhou Y. , Chen X. , Zhang Y. , Wang W. , Xu J. . ( 2012; ). Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas . . Int J Syst Evol Microbiol 62:, 764–769. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000064
Loading
/content/journal/ijsem/10.1099/ijs.0.000064
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error