1887

Abstract

Strain NEAU-ST5-21 was isolated from saline and alkaline soils in Zhaodong City, Heilongjiang Province, China. It was aerobic, Gram-stain-negative, rod-shaped and motile with a polar flagellum. It produced yellow–orange colonies with a smooth surface, and grew in the presence of 0–5 % (w/v) NaCl (optimum 0 %, w/v), at temperatures of 20–40 °C (optimum 28 °C) and at pH 7–11 (optimum pH 7). Phylogenetic analyses based on the separate 16S rRNA gene sequences and concatenated 16S rRNA, and gene sequences indicated that strain NEAU-ST5-21 belongs to the genus in the class . The most closely related species is , whose type strain (KMM 1447) showed gene sequence similarities of 99.0 % for 16S rRNA, 81.8 % for and 85.0 % for with strain NEAU-ST5-21. DNA–DNA hybridization values between strain NEAU-ST5-21 and DSM 18231, CGMCC 1.12273, DSM 5190, DSM 21016, CGMCC 2318, DSM 17744 and DSM 26169 were 52±0 % to 25±2 %. The DNA G+C content of strain NEAU-ST5-21 was 65 mol%. The major fatty acids (>10 %) were Cω7 and/or Cω6, Cω7 and/or Cω6 and C, the predominant respiratory quinone was ubiquinone 9, and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid, phosphatidylglycerol, one unknown aminolipid, one unknown lipid and a glycolipid. The proposed name is sp. nov., NEAU-ST5-21 ( = ACCC 06362 = DSM 27559) being the type strain.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31370087)
  • Natural Science Foundation of Heilongjiang Province of China (Award C201417)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000057
2015-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/1022.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000057&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. ( 2000 ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. . Int J Syst Evol Microbiol 50, 15631589. [View Article] [PubMed]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [View Article] [PubMed]
    [Google Scholar]
  3. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  4. Hirota K., Yamahira K., Nakajima K., Nodasaka Y., Okuyama H., Yumoto I. ( 2011 ). Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons. . Int J Syst Evol Microbiol 61, 18421848. [View Article] [PubMed]
    [Google Scholar]
  5. Huss V. A. R., Festl H., Schleifer K. H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [View Article] [PubMed]
    [Google Scholar]
  6. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  7. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  8. Liu Y. C., Young L. S., Lin S. Y., Hameed A., Hsu Y. H., Lai W. A., Shen F. T., Young C. C. ( 2013 ). Pseudomonas guguanensis sp. nov., a gammaproteobacterium isolated from a hot spring. . Int J Syst Evol Microbiol 63, 45914598. [View Article] [PubMed]
    [Google Scholar]
  9. López J. R., Diéguez A. L., Doce A., De la Roca E., De la Herran R., Navas J. I., Toranzo A. E., Romalde J. L. ( 2012 ). Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). . Int J Syst Evol Microbiol 62, 874882. [View Article] [PubMed]
    [Google Scholar]
  10. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3, 208218. [View Article]
    [Google Scholar]
  11. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  12. Migula W. ( 1894 ). Über ein neues System der Bakterien. . Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe 1, 235238.
    [Google Scholar]
  13. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  14. Oyaizu H., Komagata K. ( 1983 ). Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. . J Gen Appl Microbiol 29, 1740. [View Article]
    [Google Scholar]
  15. Palleroni N. J. ( 1984 ). Genus I. Pseudomonas Migula 1894, 237AL (nom. cons. opin. 5, jud. comm. 1952, 237). . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 141199. Edited by Krieg N. R., Holt J. G. . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  16. Palleroni N. J. ( 1992 ). Introduction to the family Pseudomonadaceae . . In The Prokaryotes, , 2nd edn., pp. 30713085. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. . New York:: Springer;.
    [Google Scholar]
  17. Palleroni N. J. ( 2003 ). Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. . Microbiology 149, 17. [View Article] [PubMed]
    [Google Scholar]
  18. Palleroni N. J. ( 2005 ). Genus I. Pseudomonas Migula 1894, 237AL . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, part B, pp. 323379. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. . New York:: Springer;.
    [Google Scholar]
  19. Pan Y., Huang H., Meng J., Xiao H., Li C., Meng L., Hong S., Liu H., Wang X., Jiang J. ( 2012 ). [ Biodiversity of culturable halotolerant and halophilic bacteria isolated from saline-alkaline soils in Songnen Plain. ]. Wei Sheng Wu Xue Bao 52, 11871194 (in Chinese).[PubMed]
    [Google Scholar]
  20. Parte A. C. ( 2014 ). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42 (Database issue), D613D616. [View Article] [PubMed]
    [Google Scholar]
  21. Romanenko L. A., Uchino M., Falsen E., Lysenko A. M., Zhukova N. V., Mikhailov V. V. ( 2005 ). Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. . J Gen Appl Microbiol 51, 6571. [View Article] [PubMed]
    [Google Scholar]
  22. Saha R., Spröer C., Beck B., Bagley S. ( 2010 ). Pseudomonas oleovorans subsp. lubricantis subsp. nov., and reclassification of Pseudomonas pseudoalcaligenes ATCC 17440T as later synonym of Pseudomonas oleovorans ATCC 8062T . . Curr Microbiol 60, 294300. [View Article] [PubMed]
    [Google Scholar]
  23. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  24. Sasser M. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Sneath P. H. A., Stevens M., Sackin M. J. ( 1981 ). Numerical taxonomy of Pseudomonas based on published records of substrate utilization. . Antonie van Leeuwenhoek 47, 423448. [View Article] [PubMed]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  28. Tao Y., Zhou Y., He X., Hu X., Li D. ( 2014 ). Pseudomonas chengduensis sp. nov., isolated from landfill leachate. . Int J Syst Evol Microbiol 64, 95100. [View Article] [PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  30. Timmis K. N. ( 2002 ). Pseudomonas putida: a cosmopolitan opportunist par excellence. . Environ Microbiol 4, 779781. [View Article] [PubMed]
    [Google Scholar]
  31. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. ( 1996 ). Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. . Syst Appl Microbiol 19, 528540. [View Article]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  33. Xie F. H., Ma H., Quan S. J., Liu D. H., Chen G. C., Chao Y. P., Qian S. J. ( 2014 ). Pseudomonas kunmingensis sp. nov., an exopolysaccharide-producing bacterium isolated from a phosphate mine. . Int J Syst Evol Microbiol 64, 559564. [View Article] [PubMed]
    [Google Scholar]
  34. Yamamoto S., Harayama S. ( 1995 ). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. . Appl Environ Microbiol 61, 11041109.[PubMed]
    [Google Scholar]
  35. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S. ( 2000 ). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. . Microbiology 146, 23852394.[PubMed]
    [Google Scholar]
  36. Yang Z. ( 1997 ). paml: a program package for phylogenetic analysis by maximum likelihood. . Comput Appl Biosci 13, 555556.[PubMed]
    [Google Scholar]
  37. Yang G. Q., Han L. C., Wen J. L., Zhou S. G. ( 2013 ). Pseudomonas guangdongensis sp. nov., isolated from an electroactive biofilm, and emended description of the genus Pseudomonas Migula 1894. . Int J Syst Evol Microbiol 63, 45994605. [View Article] [PubMed]
    [Google Scholar]
  38. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. ( 2001 ). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. . Int J Syst Evol Microbiol 51, 349355.[PubMed]
    [Google Scholar]
  39. Zhou Y., Dong J., Wang X., Huang X., Zhang K. Y., Zhang Y. Q., Guo Y. F., Lai R., Li W. J. ( 2007 ). Chryseobacterium flavum sp. nov., isolated from polluted soil. . Int J Syst Evol Microbiol 57, 17651769. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000057
Loading
/content/journal/ijsem/10.1099/ijs.0.000057
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error