1887

Abstract

Strain MUSC 117 was isolated from mangrove soil of the Tanjung Lumpur forest in Pahang, Malaysia. This bacterium was yellowish-white pigmented, Gram-staining-positive, rod–coccus shaped and non-motile. On the basis of 16S rRNA gene sequence, strain MUSC 117 exhibited highest sequence similarity to DSM 20127 (98.0 %), LC13 (97.9 %) and CW 59 (97.8 %), and lower (<97.6 %) sequence similarity to other species of the genus . DNA–DNA hybridization experiments revealed a low level of DNA–DNA relatedness (less than 27 %) between strain MUSC 117 and closely related species. Chemotaxonomically, the peptidoglycan type was A3α, containing the amino acids lysine, serine, glycine, alanine, glutamic acid and muramic acid. The whole-cell sugars detected were rhamnose, ribose, glucose, galactose and a smaller amount of mannose. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and five unidentified glycolipids. The major fatty acids (>10.0 %) of the cell membrane were anteiso-C (39.4 %), Cω7c (17.7 %), anteiso-C (17.2 %) and iso-C (11.4 %). The predominant respiratory quinones detected were MK-9(H) and MK-9. The DNA G+C content was 67.3 mol%. A comparison of BOX-PCR fingerprints indicated that strain MUSC 117 represented a unique DNA profile. Results based on a polyphasic approach showed that strain MUSC 117 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of sp. nov. is MUSC 117 ( = DSM 29362 = MCCC 1K00410 = NBRC 110653).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000053
2015-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/996.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000053&mimeType=html&fmt=ahah

References

  1. Atlas R. M.. ( 1993;). Handbook of Microbiological Media. Edited by Parks L. C... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  2. Carrillo P. G., Mardaraz C., Pitta-Alvarez S. I., Giulietti A. M.. ( 1996;). Isolation and selection of biosurfactant-producing bacteria. . World J Microbiol Biotechnol 12:, 82–84. [CrossRef][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. Cerny G.. ( 1978;). Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 113–122. [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  6. Ding L., Hirose T., Yokota A.. ( 2009;). Four novel Arthrobacter species isolated from filtration substrate. . Int J Syst Evol Microbiol 59:, 856–862. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–789. [CrossRef]
    [Google Scholar]
  9. Hong K., Gao A. H., Xie Q. Y., Gao H., Zhuang L., Lin H. P., Yu H. P., Li J., Yao X. S. et al. ( 2009;). Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. . Mar Drugs 7:, 24–44. [CrossRef][PubMed]
    [Google Scholar]
  10. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  11. Kates M.. ( 1986;). Techniques of Lipidology, , 2nd edn.. Amsterdam:: Elsevier;.
    [Google Scholar]
  12. Kelly K. L.. ( 1964;). Inter-Society Color Council–National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  15. Koch C., Schumann P., Stackebrandt E.. ( 1995;). Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. . Int J Syst Bacteriol 45:, 837–839. [CrossRef][PubMed]
    [Google Scholar]
  16. Kuhn D. A., Starr M. P.. ( 1960;). Arthrobacter atrocyaneus, n. sp., and its blue pigment. . Arch Mikrobiol 36:, 175–181. [CrossRef][PubMed]
    [Google Scholar]
  17. Küster E., Williams S. T.. ( 1964;). Selection of media for isolation of Streptomycetes. . Nature 202:, 928–929. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee L.-H., Zainal N., Azman A.-S., Mutalib N. S., Hong K., Chan K.-G.. ( 2014a;). Mumia flava gen. nov., sp. nov., an actinobacterium of the family Nocardioidaceae. . Int J Syst Evol Microbiol 64:, 1461–1467. [CrossRef][PubMed]
    [Google Scholar]
  19. Lee L.-H., Zainal N., Azman A.-S., Eng S.-K., Ab Mutalib N.-S., Yin W.-F., Chan K.-G.. ( 2014b;). Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus. . Int J Syst Evol Microbiol 64:, 3297–3306. [CrossRef][PubMed]
    [Google Scholar]
  20. Lee L.-H., Azman A.-S., Zainal N., Eng S.-K., Fang C.-M., Hong K., Chan K.-G.. ( 2014;c). Novosphingobium malaysiense sp. nov. isolated from mangrove sediment. . Int J Syst Evol Microbiol 64:, 1194–1201. [CrossRef][PubMed]
    [Google Scholar]
  21. Lee L.-H., Azman A.-S., Zainal N., Eng S.-K., Ab Mutalib N.-S., Yin W.-F., Chan K.-G.. ( 2014;d). Microbacterium mangrovi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. . Int J Syst Evol Microbiol 64:, 3513–3519. [CrossRef][PubMed]
    [Google Scholar]
  22. MacFaddin J. F.. ( 2000;). Biochemical Tests for Identification of Medical Bacteria, , 3rd edn.. Baltimore, MD:: Lippincott, Williams and Wilkins;.
    [Google Scholar]
  23. Meena B., Rajan L. A., Vinithkumar N. V., Kirubagaran R.. ( 2013;). Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. . BMC Microbiol 13:, 145. [CrossRef][PubMed]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  25. Prabhu D. M., Quadri S. R., Cheng J., Liu L., Chen W., Yang Y., Hozzein W. N., Lingappa K., Li W. J.. ( 2014;). Sinomonas mesophila sp. nov., isolated from ancient fort soil. . J Antibiot (Tokyo). [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  28. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  29. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  30. Shieh W. Y., Chen Y.-W., Chaw S.-M., Chiu H.-H.. ( 2003;). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. . Int J Syst Evol Microbiol 53:, 479–484. [CrossRef][PubMed]
    [Google Scholar]
  31. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  32. Takahashi Y., Matsumoto A., Seino A., Iwai Y., Omura S.. ( 1996;). Rare actinomycetes isolated from desert soils. . Actinomycetologica 10:, 91–97. [CrossRef]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  35. Versalovic J., Koeuth T., Lupski J. R.. ( 1991;). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. . Nucleic Acids Res 19:, 6823–6831. [CrossRef][PubMed]
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  37. Zhang M.-Y., Xie J., Zhang T.-Y., Xu H., Cheng J., Li S.-H., Li W. J., Zhang Y. X.. ( 2014;). Sinomonas notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng. . Antonie van Leeuwenhoek 106:, 827–835. [CrossRef][PubMed]
    [Google Scholar]
  38. Zhou Y., Wei W., Wang X., Lai R.. ( 2009;). Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. . Int J Syst Evol Microbiol 59:, 259–263. [CrossRef][PubMed]
    [Google Scholar]
  39. Zhou Y., Chen X., Zhang Y., Wang W., Xu J.. ( 2012;). Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. . Int J Syst Evol Microbiol 62:, 764–769. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000053
Loading
/content/journal/ijsem/10.1099/ijs.0.000053
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error