1887

Abstract

Three anaerobic bacterial strains were isolated from the digestive tract of the medicinal leech , using mucin as the primary carbon and energy source. These strains, designated M3, M4 and M6, were Gram-stain-negative, non-spore-forming and non-motile. Cells were elongated bacilli approximately 2.4 µm long and 0.6 µm wide. Growth only occurred anaerobically under mesophilic and neutral pH conditions. All three strains could utilize multiple simple and complex sugars as carbon sources, with glucose fermented to acid by-products. The DNA G+C contents of strains M3, M4 and M6 were 44.9, 44.8 and 44.8 mol%, respectively. The major cellular fatty acid of strain M3 was iso-C. Phylogenetic analysis of full-length 16S rRNA gene sequences revealed that the three strains shared >99 % similarity with each other and represent a new lineage within the family of the order , phylum . The most closely related bacteria to strain M3 based on 16S rRNA gene sequences were DSM 15922 (87.3 % similarity) and AHN 2437 (87.4 %). On the basis of phenotypic, genotypic and physiological evidence, strains M3, M4 and M6 are proposed as representing a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is M3 ( = ATCC BAA-2553 = DSM 27344).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000052
2015-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/990.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000052&mimeType=html&fmt=ahah

References

  1. Abe K., Ueki A., Ohtaki Y., Kaku N., Watanabe K., Ueki K.. ( 2012;). Anaerocella delicata gen. nov., sp. nov., a strictly anaerobic bacterium in the phylum Bacteroidetes isolated from a methanogenic reactor of cattle farms. . J Gen Appl Microbiol 58:, 405–412. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  3. An D., Oh S. F., Olszak T., Neves J. F., Avci F. Y., Erturk-Hasdemir D., Lu X., Zeissig S., Blumberg R. S., Kasper D. L.. ( 2014;). Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. . Cell 156:, 123–133. [CrossRef][PubMed]
    [Google Scholar]
  4. Bacic M. K., Smith C. J.. ( 2008;). Laboratory Maintenance and Cultivation of Bacteroides Species. . Curr Protoc Microbiol, 9:C:13C.1:13C.1.1–13C.1.21. doi:10.1002/9780471729259.mc13c01s9
    [Google Scholar]
  5. Bomar L., Maltz M., Colston S., Graf J.. ( 2011;). Directed culturing of microorganisms using metatranscriptomics. . MBio 2:, e00012-11. [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D., Shah H. N., Mitsuoka T.. ( 1985;). Reclassification of Bacteroides microfusus (Kaneuchi and Mitsuoka) in a new genus Rikenella, as Rikenella microfusus comb. nov.. Appl Microbiol 6:, 79–81. [CrossRef]
    [Google Scholar]
  7. Comstock L. E.. ( 2009;). Importance of glycans to the host-Bacteroides mutualism in the mammalian intestine. . Cell Host Microbe 5:, 522–526. [CrossRef][PubMed]
    [Google Scholar]
  8. Edgar R. C.. ( 2004;). muscle: a multiple sequence alignment method with reduced time and space complexity. . BMC Bioinformatics 5:, 113. [CrossRef][PubMed]
    [Google Scholar]
  9. Goodfellow M., Kämpfer P., Chun J., De Vos P., Rainey F., Whitman W. B.. ( 2011;). Genus I. Rikenella. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 55–61. Edited by Krieg N. R., Ludwig W., Whitman W. B., Hedlund B. P., Paster B. J., Staley J. T., Ward N. L., Brown D. R., Parte A... Berlin:: Springer;.
    [Google Scholar]
  10. Graf J.. ( 2014;). Rikenellaceae. . In The Prokaryotes, pp. 857–859. Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  11. Graf J., Kikuchi Y., Rio R. V.. ( 2006;). Leeches and their microbiota: naturally simple symbiosis models. . Trends Microbiol 14:, 365–371. [CrossRef][PubMed]
    [Google Scholar]
  12. Kaneuchi C., Mitsuoka T.. ( 1978;). Bacteroides microfusus, a new species from the intestines of calves, chickens, and Japanese quails. . Int J Syst Bacteriol 28:, 478–481. [CrossRef]
    [Google Scholar]
  13. Kröber M., Bekel T., Diaz N. N., Goesmann A., Jaenicke S., Krause L., Miller D., Runte K. J., Viehöver P. et al. ( 2009;). Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. . J Biotechnol 142:, 38–49. [CrossRef][PubMed]
    [Google Scholar]
  14. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  15. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  16. Leser T. D., Mølbak L.. ( 2009;). Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. . Environ Microbiol 11:, 2194–2206. [CrossRef][PubMed]
    [Google Scholar]
  17. Liu F. H., Wang S. B., Zhang J. S., Zhang J., Yan X., Zhou H. K., Zhao G. P., Zhou Z. H.. ( 2009;). The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. . J Appl Microbiol 106:, 952–966. [CrossRef][PubMed]
    [Google Scholar]
  18. Maltz M. A., Bomar L., Lapierre P., Morrison H. G., McClure E. A., Sogin M. L., Graf J.. ( 2014;). Metagenomic analysis of the medicinal leech gut microbiota. . Front Microbiol 5:, 151. [CrossRef][PubMed]
    [Google Scholar]
  19. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  20. Nagai F., Morotomi M., Watanabe Y., Sakon H., Tanaka R.. ( 2010;). Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. . Int J Syst Evol Microbiol 60:, 1296–1302. [CrossRef][PubMed]
    [Google Scholar]
  21. Nelson M. C., Graf J.. ( 2012;). Bacterial symbioses of the medicinal leech Hirudo verbana. . Gut Microbes 3:, 322–331. [CrossRef][PubMed]
    [Google Scholar]
  22. Nelson M. C., Bomar L., Graf J.. ( 2015;). Complete genome sequence of the novel leech symbiont Mucinivorans hirudinis M3T. . Genome Announc 3(1):, e01530–14. doi:10.1128/genomeA.01530-14
    [Google Scholar]
  23. Rautio M., Eerola E., Väisänen-Tunkelrott M.-L., Molitoris D., Lawson P., Collins M. D., Jousimies-Somer H.. ( 2003;). Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. . Syst Appl Microbiol 26:, 182–188. [CrossRef][PubMed]
    [Google Scholar]
  24. Sawyer R.. ( 1986;). Leech Biology and Behaviour, vol. 2. Oxford:: Clarendon Press;.
    [Google Scholar]
  25. Siddall M. E., Min G.-S., Fontanella F. M., Phillips A. J., Watson S. C.. ( 2011;). Bacterial symbiont and salivary peptide evolution in the context of leech phylogeny. . Parasitology 138:, 1815–1827. [CrossRef][PubMed]
    [Google Scholar]
  26. Song Y., Könönen E., Rautio M., Liu C., Bryk A., Eerola E., Finegold S. M.. ( 2006;). Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. . Int J Syst Evol Microbiol 56:, 1985–1990. [CrossRef][PubMed]
    [Google Scholar]
  27. Weiss S., Zankel A., Lebuhn M., Petrak S., Somitsch W., Guebitz G. M.. ( 2011;). Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage. . Bioresour Technol 102:, 4353–4359. [CrossRef][PubMed]
    [Google Scholar]
  28. Worthen P. L., Gode C. J., Graf J.. ( 2006;). Culture-independent characterization of the digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis. . Appl Environ Microbiol 72:, 4775–4781. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000052
Loading
/content/journal/ijsem/10.1099/ijs.0.000052
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error