1887

Abstract

During sampling of reptiles for members of the class , strains representing a member of the genus not belonging to any of the established taxa were isolated from lizards and chelonians. Initial amplified fragment length polymorphism, PCR and 16S rRNA sequence analysis showed that these strains were most closely related to and . A polyphasic study was undertaken to determine the taxonomic position of five strains. The strains were characterized by 16S rRNA and sequence analysis, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and conventional phenotypic testing. Whole-genome sequences were determined for strains 1485E and 2463D, and the average nucleotide and amino acid identities were determined for these strains. The strains formed a robust phylogenetic clade, divergent from all other species of the genus . In contrast to most currently known members of the genus , the strains showed growth at ambient temperatures, which might be an adaptation to their reptilian hosts. The results of this study clearly show that these strains isolated from reptiles represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 1485E ( = LMG 28143 = CCUG 66346).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000048
2015-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/975.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000048&mimeType=html&fmt=ahah

References

  1. Benejat L. , Gravet A. , Sifré E. , Ben Amor S. , Quintard B. , Mégraud F. , Lehours P. . ( 2014; ). Characterization of a Campylobacter fetus-like strain isolated from the faeces of a sick leopard tortoise (Stigmochelys pardalis) using matrix-assisted laser desorption/ionization time of flight as an alternative to bacterial 16S rDNA phylogeny. . Lett Appl Microbiol 58:, 338–343. [CrossRef] [PubMed]
    [Google Scholar]
  2. Blaser M. J. , Newell D. G. , Thompson S. A. , Zechner E. L. . ( 2008; ). Pathogenesis of Campylobacter fetus . . In Campylobacter, pp. 401–428. Edited by Nachamkin I. , Szymanski C. M. , Blaser M. J. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Debruyne L. , Gevers D. , Vandamme P. . ( 2008; ). Taxonomy of the family Campylobacteraceae . . In Campylobacter, pp. 3–25. Edited by Nachamkin I. , Szymanski C. M. , Blaser M. J. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Debruyne L. , On S. L. , De Brandt E. , Vandamme P. . ( 2009; ). Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov. and Campylobacter lari subsp. lari subsp. nov. . Int J Syst Evol Microbiol 59:, 1126–1132. [CrossRef] [PubMed]
    [Google Scholar]
  5. Debruyne L. , Broman T. , Bergström S. , Olsen B. , On S. L. , Vandamme P. . ( 2010; ). Campylobacter volucris sp. nov., isolated from black-headed gulls (Larus ridibundus). . Int J Syst Evol Microbiol 60:, 1870–1875. [CrossRef] [PubMed]
    [Google Scholar]
  6. Duim B. , Wassenaar T. M. , Rigter A. , Wagenaar J. . ( 1999; ). High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. . Appl Environ Microbiol 65:, 2369–2375.[PubMed]
    [Google Scholar]
  7. Elharrif Z. , Mégraud F. . ( 1986a; ). Characterization of thermophilic Campylobacter: I. Carbon-substrate utilization tests. . Curr Microbiol 13:, 117–122. [CrossRef]
    [Google Scholar]
  8. Elharrif Z. , Mégraud F. . ( 1986b; ). Characterization of thermophilic Campylobacter. II. Enzymatic profiles. . Curr Microbiol 13:, 317–322. [CrossRef]
    [Google Scholar]
  9. Fitzgerald C. , Tu Z. C. , Patrick M. , Stiles T. , Lawson A. J. , Santovenia M. , Gilbert M. J. , van Bergen M. , Joyce K. . & other authors ( 2014; ). Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles. . Int J Syst Evol Microbiol 64:, 2944–2948. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gilbert M. J. , Kik M. , Timmerman A. J. , Severs T. T. , Kusters J. G. , Duim B. , Wagenaar J. A. . ( 2014a; ). Occurrence, diversity, and host association of intestinal Campylobacter, Arcobacter, and Helicobacter in reptiles. . PLoS ONE 9:, e101599. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gilbert M. J. , Miller W. G. , Yee E. , Kik M. , Wagenaar J. A. , Duim B. . ( 2014b; ). Complete genome sequence of Campylobacter iguaniorum strain 1485ET, isolated from a bearded dragon (Pogona vitticeps). . Genome Announc 2:, e00844-14. [CrossRef] [PubMed]
    [Google Scholar]
  12. Goris J. , Konstantinidis K. T. , Klappenbach J. A. , Coenye T. , Vandamme P. , Tiedje J. M. . ( 2007; ). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  13. Harvey S. , Greenwood J. R. . ( 1985; ). Isolation of Campylobacter fetus from a pet turtle. . J Clin Microbiol 21:, 260–261.[PubMed]
    [Google Scholar]
  14. Konstantinidis K. T. , Tiedje J. M. . ( 2005a; ). Genomic insights that advance the species definition for prokaryotes. . Proc Natl Acad Sci U S A 102:, 2567–2572. [CrossRef] [PubMed]
    [Google Scholar]
  15. Konstantinidis K. T. , Tiedje J. M. . ( 2005b; ). Towards a genome-based taxonomy for prokaryotes. . J Bacteriol 187:, 6258–6264. [CrossRef] [PubMed]
    [Google Scholar]
  16. Konstantinidis K. T. , Ramette A. , Tiedje J. M. . ( 2006; ). The bacterial species definition in the genomic era. . Philos Trans R Soc Lond B Biol Sci 361:, 1929–1940. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lan R. , Reeves P. R. . ( 2000; ). Intraspecies variation in bacterial genomes: the need for a species genome concept. . Trends Microbiol 8:, 396–401. [CrossRef] [PubMed]
    [Google Scholar]
  18. Maiwald M. . ( 2004; ). Broad-range PCR for detection and identification of bacteria. . In Molecular Microbiology: Diagnostics Principles and Practice, pp. 379–390. Edited by Persing D. H. , Tenover F. C. , Versalovic J. , Tang Y.-W. , Relman D. , White T. J. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Marshall S. M. , Melito P. L. , Woodward D. L. , Johnson W. M. , Rodgers F. G. , Mulvey M. R. . ( 1999; ). Rapid identification of Campylobacter, Arcobacter, and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene. . J Clin Microbiol 37:, 4158–4160.[PubMed]
    [Google Scholar]
  20. Miller W. G. , Yee E. , Jolley K. A. , Chapman M. H. . ( 2014; ). Use of an improved atpA amplification and sequencing method to identify members of the Campylobacteraceae and Helicobacteraceae . . Lett Appl Microbiol 58:, 582–590. [CrossRef] [PubMed]
    [Google Scholar]
  21. On S. L. , Holmes B. . ( 1991a; ). Effect of inoculum size on the phenotypic characterization of Campylobacter species. . J Clin Microbiol 29:, 923–926.[PubMed]
    [Google Scholar]
  22. On S. L. , Holmes B. . ( 1991b; ). Reproducibility of tolerance tests that are useful in the identification of campylobacteria. . J Clin Microbiol 29:, 1785–1788.[PubMed]
    [Google Scholar]
  23. On S. L. , Holmes B. . ( 1992; ). Assessment of enzyme detection tests useful in identification of campylobacteria. . J Clin Microbiol 30:, 746–749.[PubMed]
    [Google Scholar]
  24. On S. L. , Holmes B. , Sackin M. J. . ( 1996; ). A probability matrix for the identification of campylobacters, helicobacters and allied taxa. . J Appl Bacteriol 81:, 425–432.[PubMed]
    [Google Scholar]
  25. Patrick M. E. , Gilbert M. J. , Blaser M. J. , Tauxe R. V. , Wagenaar J. A. , Fitzgerald C. . ( 2013; ). Human infections with new subspecies of Campylobacter fetus . . Emerg Infect Dis 19:, 1678–1680.[PubMed] [CrossRef]
    [Google Scholar]
  26. Richter M. , Rosselló-Móra R. . ( 2009; ). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rutherford K. , Parkhill J. , Crook J. , Horsnell T. , Rice P. , Rajandream M. A. , Barrell B. . ( 2000; ). Artemis: sequence visualization and annotation. . Bioinformatics 16:, 944–945. [CrossRef] [PubMed]
    [Google Scholar]
  28. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. , Kämpfer P. , Maiden M. C. , Nesme X. , Rosselló-Mora R. , Swings J. . & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tu Z. C. , Zeitlin G. , Gagner J. P. , Keo T. , Hanna B. A. , Blaser M. J. . ( 2004; ). Campylobacter fetus of reptile origin as a human pathogen. . J Clin Microbiol 42:, 4405–4407. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ursing J. B. , Lior H. , Owen R. J. . ( 1994; ). Proposal of minimal standards for describing new species of the family Campylobacteraceae . . Int J Syst Bacteriol 44:, 842–845. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wang C. M. , Shia W. Y. , Jhou Y. J. , Shyu C. L. . ( 2013; ). Occurrence and molecular characterization of reptilian Campylobacter fetus strains isolated in Taiwan. . Vet Microbiol 164:, 67–76. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000048
Loading
/content/journal/ijsem/10.1099/ijs.0.000048
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error