sp. nov., isolated from grassland soil Free

Abstract

A Gram-stain negative, rod-shaped, non-spore-forming, obligate aerobic bacterial strain, JC2949, was isolated from grassland soil in Gwanak Mountain, Seoul, Republic of Korea. Phylogenetic analysis, based on 16S rRNA sequences, indicated that strain JC2949 belongs to the genus , showing highest sequence similarities with R27 (98.8 %), LMG 27620 (98.6 %), MP-1T (98.6 %), OP-1 (98.5 %), LMG 22934 (97.5 %), LMG 22937 (97.3 %), LMG 22936 (97.2 %) and ATCC 29195 (97.0 %). The major fatty acids of strain JC2949 were Cω7, summed feature 3 (Cω7 and/or Cω6) and C. Its predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unknown amino phospholipid. The dominant isoprenoid quinone was ubiquinone Q-8. The pairwise average nucleotide identity values between strain JC2949 and the genomes of 30 other species of the genus ranged from 73.4–90.4 %, indicating that the isolate is a novel genomic species within this genus. Based on phenotypic and chemotaxonomic comparisons, it is clear that strain JC2949 represents a novel species of the genus . We propose the name for this novel species to be sp. nov. The type strain is JC2949 ( = KACC 17925 = JCM 19905).

Funding
This study was supported by the:
  • Ministry of Environment, Republic of Korea
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000046
2015-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/959.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000046&mimeType=html&fmt=ahah

References

  1. Chun J., Goodfellow M. ( 1995 ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45, 240245. [View Article] [PubMed]
    [Google Scholar]
  2. Draghi W. O., Peeters C., Cnockaert M., Snauwaert C., Wall L. G., Zorreguieta A., Vandamme P. ( 2014 ). Burkholderia cordobensis sp. nov., from agricultural soils. . Int J Syst Evol Microbiol 64, 20032008. [View Article] [PubMed]
    [Google Scholar]
  3. Embley T. M., Wait R. ( 1994 ). Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics. , pp. 121161. Edited by Goodfellow M., O'Donnell A. G. . Chichester:: Wiley;.
    [Google Scholar]
  4. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  5. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. ( 2007 ). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57, 8191. [View Article] [PubMed]
    [Google Scholar]
  6. Jeon Y. S., Lee K., Park S. C., Kim B. S., Cho Y. J., Ha S. M., Chun J. ( 2014 ). EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. . Int J Syst Evol Microbiol 64, 689691. [View Article] [PubMed]
    [Google Scholar]
  7. Jukes T., Cantor C. ( 1969 ). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21132. Edited by Munro H. . New York:: Academic Press;. [View Article]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  9. Kim M., Oh H. S., Park S. C., Chun J. ( 2014 ). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64, 346351. [View Article] [PubMed]
    [Google Scholar]
  10. Lanave C., Preparata G., Sacone C., Serio G. ( 1984 ). A new method for calculating evolutionary substitution rates. . J Mol Evol 20, 8693. [View Article] [PubMed]
    [Google Scholar]
  11. Liu X.-Y., Li C.-X., Luo X.-J., Lai Q.-L., Xu J.-H. ( 2014 ). Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. . Int J Syst Evol Microbiol 64, 32473253. [View Article] [PubMed]
    [Google Scholar]
  12. Lu P., Zheng L. Q., Sun J. J., Liu H. M., Li S. P., Hong Q., Li W. J. ( 2012 ). Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. . Int J Syst Evol Microbiol 62, 13371341. [View Article] [PubMed]
    [Google Scholar]
  13. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal M., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  14. Nei M., Kumar S. ( 2000 ). Molecular Evolution and Phylogenetics. USA:: Oxford University Press;.
    [Google Scholar]
  15. Ronquist F., Huelsenbeck J. P. ( 2003 ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19, 15721574. [View Article] [PubMed]
    [Google Scholar]
  16. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  17. Sasser M. ( 2001 ). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013 ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30, 27252729. [View Article] [PubMed]
    [Google Scholar]
  20. Tian Y., Kong B. H., Liu S. L., Li C. L., Yu R., Liu L., Li Y. H. ( 2013 ). Burkholderia grimmiae sp. nov., isolated from a xerophilous moss (Grimmia montana). . Int J Syst Evol Microbiol 63, 21082113. [View Article] [PubMed]
    [Google Scholar]
  21. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. ( 1992 ). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.. Microbiol Immunol 36, 12511275. [View Article] [PubMed]
    [Google Scholar]
  22. Yang Z. H., Rannala B. ( 1997 ). Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. . Mol Biol Evol 14, 717724. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000046
Loading
/content/journal/ijsem/10.1099/ijs.0.000046
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed