1887

Abstract

A Gram-stain-negative, facultatively anaerobic, oxidase- and catalase-positive, rod-shaped bacterium, strain SYM1, was isolated from a culture of sp., an algal symbiont of the sea anemone collected in Puerto Rico. Growth was observed at 4–40 °C (optimum 30 °C), at pH 5.0–11.0 (optimum pH 8.0) and with 0.5–8 % (optimum 2 %) (w/v) NaCl. Phylogenetic analyses of 16S rRNA gene sequences showed that strain SYM1 was a member of the genus with the type strain of as the closest phylogenetic relative with a pairwise sequence similarity of 98.15 %. However, DNA–DNA relatedness between strain SYM1 and CIP 106451 was 24 %. Moreover, strain SYM1 could be distinguished from its closest relative by several phenotypic characteristics such as NaCl, pH and temperature tolerance, nitrate reduction and utilization of carbon substrates. The major cellular fatty acids were C, Cω7 and summed feature 3 (comprising Cω7 and/or iso-C 2-OH). The genomic DNA G+C content of strain SYM1 was 45 mol%. Ubiquinone-8 (Q-8) was the only respiratory quinone detected. Based on a polyphasic taxonomic characterization, strain SYM1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SYM1 ( = LMG 28329 = CECT 8716).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000039
2015-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/915.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000039&mimeType=html&fmt=ahah

References

  1. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  5. Gevers D., Huys G., Swings J.. ( 2001;). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. . FEMS Microbiol Lett 205:, 31–36. [CrossRef][PubMed]
    [Google Scholar]
  6. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  7. Hedlund B. P., Geiselbrecht A. D., Bair T. J., Staley J. T.. ( 1999;). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov.. Appl Environ Microbiol 65:, 251–259.[PubMed]
    [Google Scholar]
  8. Hillis D. M., Bull J. J.. ( 1993;). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. . Syst Biol 42:, 182–192. [CrossRef]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. LaJeunesse T. C.. ( 2001;). Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a ‘species’ level marker. . J Phycol 37:, 866–880. [CrossRef]
    [Google Scholar]
  12. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  13. Lee H.-W., Shin N.-R., Lee J., Roh S. W., Whon T. W., Bae J.-W.. ( 2012;). Neptunomonas concharum sp. nov., isolated from a dead ark clam, and emended description of the genus Neptunomonas. . Int J Syst Evol Microbiol 62:, 2657–2661. [CrossRef][PubMed]
    [Google Scholar]
  14. Liu A., Zhang X. Y., Chen C.-X., Xie B. B., Qin Q.-L., Liu C., Li G.-W., Li H., Xu Z.. & other authors ( 2013;). Neptunomonas qingdaonensis sp. nov., isolated from intertidal sand. . Int J Syst Evol Microbiol 63:, 1673–1677. [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Miyazaki M., Nogi Y., Fujiwara Y., Kawato M., Kubokawa K., Horikoshi K.. ( 2008;). Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. . Int J Syst Evol Microbiol 58:, 866–871. [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  22. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  24. Yang S.-H., Seo H.-S., Lee J.-H., Kim S.-J., Kwon K. K.. ( 2014;). Neptunomonas acidivorans sp. nov., isolated from sediment, and emended description of the genus Neptunomonas. . Int J Syst Evol Microbiol 64:, 3650–3654. [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang X. Y., Zhang Y. J., Yu Y., Li H. J., Gao Z. M., Chen X. L., Chen B., Zhang Y. Z.. ( 2010;). Neptunomonas antarctica sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 60:, 1958–1961. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000039
Loading
/content/journal/ijsem/10.1099/ijs.0.000039
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error