1887

Abstract

A Gram-stain positive, aerobic, non-motile actinobacterium, designated DSXY973, was isolated from soil samples collected from Xinjiang desert using medium supplemented with resuscitation-promoting factor, and subjected to a polyphasic taxonomic investigation. Phylogenetic analysis based on 16S rRNA gene sequences revealed that DSXY973 belonged to the genus and was most closely related to JCM 15922 with 97.1 % similarity. The DNA G+C content was 67.6 %. Cells of strain DSXY973 mainly contained MK-9(H), and the cell wall contained -lysine as the primary diamino acid. The major cellular fatty acids were anteiso-C, anteiso-C and iso-C. Strain DSXY973 was positive for catalase and negative for oxidase activity. On the basis of its phylogenetic position and phenotypic properties, strain DSXY973 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DSXY973 ( = CGMCC1.12778 = JCM 19864).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000037
2015-03-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/896.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000037&mimeType=html&fmt=ahah

References

  1. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  2. Collins M. D.. ( 1985;). Isoprenoid quinone analyses in bacterial classification and identification. . In Chemical Methods in Bacterial Systematics, pp, 267–287. Edited by Goodfellow M, Minikin D. E... London:: Academic Press;.
    [Google Scholar]
  3. Colwell R. R., Brayton P. R., Grimes D. J., Roszak D. B., Huq S. A., Palmer L. M.. ( 1985;). Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered eicroorganisms. . Nat Biotechnol 3:, 817–820. [CrossRef]
    [Google Scholar]
  4. Conn H. J., Dimmick I.. ( 1947;). Soil bacteria similar in morphology to Mycobacterium and Corynebacterium.. J Bacteriol 54:, 291–303.[PubMed]
    [Google Scholar]
  5. De Man J.. ( 1975;). The probability of most probable numbers. . Eur J Appl Microbiol Biotechnol 1:, 67–78. [CrossRef]
    [Google Scholar]
  6. Ding L.. ( 2004;). Studies on the isolation of viable but non-culturable bacteria and the phylogenetic analysis of the genus Aquaspirillum. PhD thesis, University of Tokyo;, Tokyo, Japan:.
    [Google Scholar]
  7. Ding L., Yokota A.. ( 2010;). Curvibacter fontana sp. nov., a microaerobic bacteria isolated from well water. . J Gen Appl Microbiol 56:, 267–271. [CrossRef][PubMed]
    [Google Scholar]
  8. Ding L., Hirose T., Yokota A.. ( 2007;). Amycolatopsis echigonensis sp. nov. and Amycolatopsis niigatensis sp. nov., novel actinomycetes isolated from a filtration substrate. . Int J Syst Evol Microbiol 57:, 1747–1751. [CrossRef][PubMed]
    [Google Scholar]
  9. Ding L., Hirose T., Yokota A.. ( 2009;). Four novel Arthrobacter species isolated from filtration substrate. . Int J Syst Evol Microbiol 59:, 856–862. [CrossRef][PubMed]
    [Google Scholar]
  10. Ding L., Su X., Yokota A.. ( 2011;). [Research progress of VBNC bacteria–a review]. . Wei Sheng Wu Xue Bao-Acta Microbiologica Sinica 51:, 858–862.[PubMed]
    [Google Scholar]
  11. Ding L., Zhang P., Hong H., Lin H., Yokota A.. ( 2012;). [Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471]. . Wei Sheng Wu Xue Bao-Acta Microbiologica Sinica 52:, 77–82.[PubMed]
    [Google Scholar]
  12. Epstein S. S.. ( 2009;). Microbial awakenings. . Nature 457:, 1083. [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  14. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  15. Goodfellow M.. ( 1971;). Numerical taxonomy of some nocardioform bacteria. . J Gen Microbiol 69:, 33–80. [CrossRef][PubMed]
    [Google Scholar]
  16. Hasegawa T., Takizawa M., Tanida S.. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  17. Hoang V.-A., Kim Y.-J., Nguyen N.-L., Yang D.-C.. ( 2014;). Arthrobacter gyeryongensis sp. nov., isolated from soil of a Gynostemma pentaphyllum field. . Int J Syst Evol Microbiol 64:, 420–425. [CrossRef][PubMed]
    [Google Scholar]
  18. Keddie R. M., Collins M. D., Jones D.. ( 1986;). Genus Arthrobacter Conn and Dimmick 1947, 300AL. . In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1288–1301. Edited by Mair N. S., Sneath P. H. A., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  19. Kim S. B., Falconer C., Williams E., Goodfellow M.. ( 1998;). Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. . Int J Syst Bacteriol 48:, 59–68. [CrossRef][PubMed]
    [Google Scholar]
  20. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M.. ( 1984;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  23. Koch C., Schumann P., Stackebrandt E.. ( 1995;). Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. . Int J Syst Bacteriol 45:, 837–839. [CrossRef][PubMed]
    [Google Scholar]
  24. Li B., Furihata K., Ding L.-X., Yokota A.. ( 2007;). Rhodococcus kyotonensis sp. nov., a novel actinomycete isolated from soil. . Int J Syst Evol Microbiol 57:, 1956–1959. [CrossRef][PubMed]
    [Google Scholar]
  25. Li S. H., Jin Y., Cheng J., Park D. J., Kim C. J., Hozzein W. N., Wadaan M. A., Shu W. S., Ding L. X., Li W. J.. ( 2014;). Gordonia jinhuaensis sp. nov., a novel actinobacterium, isolated from a VBNC (viable but non-culturable) state in pharmaceutical wastewater. . Antonie van Leeuwenhoek 106:, 347–356. [CrossRef][PubMed]
    [Google Scholar]
  26. Mao J., Wang J., Dai H.-Q., Zhang Z.-D., Tang Q.-Y., Ren B., Yang N., Goodfellow M., Zhang L.-X., Liu Z. H.. ( 2011;). Yuhushiella deserti gen. nov., sp. nov., a new member of the suborder Pseudonocardineae. . Int J Syst Evol Microbiol 61:, 621–630. [CrossRef][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Minnikin D., O'donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  29. Mukamolova G. V., Kaprelyants A. S., Young D. I., Young M., Kell D. B.. ( 1998;). A bacterial cytokine. . Proc Natl Acad Sci U S A 95:, 8916–8921. [CrossRef][PubMed]
    [Google Scholar]
  30. Mukamolova G. V., Kormer S. S., Kell D. B., Kaprelyants A. S.. ( 1999;). Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor. . Arch Microbiol 172:, 9–14. [CrossRef][PubMed]
    [Google Scholar]
  31. Oliver J. D.. ( 2010;). Recent findings on the viable but nonculturable state in pathogenic bacteria. . FEMS Microbiol Rev 34:, 415–425.[PubMed]
    [Google Scholar]
  32. Pridham T. G., Gottlieb D.. ( 1948;). The utilization of carbon compounds by some Actinomycetales as an aid for species determination. . J Bacteriol 56:, 107–114.[PubMed]
    [Google Scholar]
  33. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  34. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 1–6.
    [Google Scholar]
  35. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  36. Sierra G.. ( 1957;). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. . Antonie van Leeuwenhoek 23:, 15–22. [CrossRef][PubMed]
    [Google Scholar]
  37. Skerman V. B. D.. ( 1967;). A Guide to the Identification of the Genera of Bacteria, , 2nd edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  38. Stackebrandt E., Fowler V. J., Fiedler F., Seiler H.. ( 1983;). Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov.. Syst Appl Microbiol 4:, 470–486. [CrossRef][PubMed]
    [Google Scholar]
  39. Steel K.. ( 1961;). The oxidase reaction as a taxonomic tool. . J Gen Microbiol 25:, 297–306. [CrossRef]
    [Google Scholar]
  40. Su X., Zhang H., Ding L., Shen X., Yokota A.. ( 2011;). Optimized culture medium and culture conditions for multiple bioflocculant-producing microorganisms. . J Huazhong Normal Univ (Natural Sciences) 45:, 450–455.
    [Google Scholar]
  41. Su X., Shen X., Ding L., Yokota A.. ( 2012;). Study on the flocculability of the Arthrobacter sp., an actinomycete resuscitated from the VBNC state. . World J Microbiol Biotechnol 28:, 91–97. [CrossRef][PubMed]
    [Google Scholar]
  42. Su X., Chen X., Hu J., Shen C., Ding L.. ( 2013a;). Exploring the potential environmental functions of viable but non-culturable bacteria. . World J Microbiol Biotechnol 29:, 2213–2218. [CrossRef][PubMed]
    [Google Scholar]
  43. Su X., Ding L., Shen C.. ( 2013b;). [Potential of viable but non-culturable bacteria in polychlorinated biphenyls degradation–a review]. . Wei Sheng Wu Xue Bao-Acta Microbiologica Sinica 53:, 908–914.[PubMed]
    [Google Scholar]
  44. Su X., Shen H., Yao X., Ding L., Yu C., Shen C.. ( 2013c;). A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. . Bioresour Technol 146:, 27–34. [CrossRef][PubMed]
    [Google Scholar]
  45. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  46. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  47. Tang Q.-Y., Yang N., Wang J., Xie Y.-Q., Ren B., Zhou Y.-G., Gu M.-Y., Mao J., Li W.-J., Zhang L.-X.. ( 2011;). Paenibacillus algorifonticola sp. nov., isolated from a cold spring. . Int J Syst Evol Microbiol 61:, 2167–2172. [CrossRef][PubMed]
    [Google Scholar]
  48. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  49. Wu C., Lu X., Qin M., Wang Y., Ruan J.. ( 1989;). Analysis of menaquinone compound in microbial cells by HPLC. . Microbiology [English translation of Microbiology (Beijing)]. 16:, 176–178.
    [Google Scholar]
  50. Yang N., Ren B., Dai H., Liu Z., Zhou Y., Song F., Zhang L.. ( 2013;). Gracilibacillus xinjiangensis sp. nov., a new member of the genus Gracilibacillus isolated from Xinjiang region, China. . Antonie van Leeuwenhoek 104:, 809–816. [CrossRef][PubMed]
    [Google Scholar]
  51. Yang N., Ren B., Liu Z.-H., Dai H.-Q., Wang J., Zhou Y.-G., Song F.-H., Zhang L.-X.. ( 2014;). Salinibacillus xinjiangensis sp. nov., a halophilic bacterium from a hypersaline lake. . Int J Syst Evol Microbiol 64:, 27–32. [CrossRef][PubMed]
    [Google Scholar]
  52. Zhang L., An R., Wang J., Sun N., Zhang S., Hu J., Kuai J.. ( 2005;). Exploring novel bioactive compounds from marine microbes. . Curr Opin Microbiol 8:, 276–281. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000037
Loading
/content/journal/ijsem/10.1099/ijs.0.000037
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error