1887

Abstract

Three strains of an anaerobic, Gram-stain-positive coccobacillus were isolated from the intestines of mice. These strains shared 100 % similarity in their 16S rRNA gene sequences, but were distantly related to any described members of the family (<94 %). The most closely related species with names that have standing in nomenclature were , , and . Phylogenetic relationships based on 16S rRNA gene sequence analysis were confirmed by partial sequencing of genes. The use of an in-house database search pipeline revealed that the new isolates are most prevalent in bovine gut samples when compared with human and mouse samples for and . All three isolated strains shared similar cellular fatty acid patterns dominated by C methyl ester. Differences in the proportions of C methyl ester, C methyl ester and C -11 dimethyl acetal were observed when compared with phylogenetically neighbouring species. The major short-chain fatty acid produced by strain SRB-530-5-H was acetic acid. This strain tested positive for utilization of -fructose, -galacturonic acid, -malic acid, -alanyl -threonine and -glutamic acid but was negative for utilization of amygdalin, arbutin, α--glucose, 3-methyl -glucose and salicin, in contrast to the type strain of the closest related species . The isolates were not able to use mannitol for growth. Based on genotypic, phenotypic and chemotaxonomic characteristics, we propose to create the new genus and species gen. nov., sp. nov. to accommodate the three strains SRB-530-5-H ( = DSM 26524 = CCUG 63391) (the type strain of ), SRB-509-4-S-H ( = DSM 27577 = CCUG 64595) and SRB-524-4-S-H ( = DSM 27578 = CCUG 64594).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000030
2015-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/870.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000030&mimeType=html&fmt=ahah

References

  1. Allen-Vercoe E., Daigneault M., White A., Panaccione R., Duncan S. H., Flint H. J., O’Neal L., Lawson P. A. ( 2012 ). Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. . Anaerobe 18, 523529. [View Article] [PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410. [View Article] [PubMed]
    [Google Scholar]
  3. Bäckhed F., Ding H., Wang T., Hooper L. V., Koh G. Y., Nagy A., Semenkovich C. F., Gordon J. I. ( 2004 ). The gut microbiota as an environmental factor that regulates fat storage. . Proc Natl Acad Sci U S A 101, 1571815723. [View Article] [PubMed]
    [Google Scholar]
  4. Ballard S. A., Grabsch E. A., Johnson P. D., Grayson M. L. ( 2005 ). Comparison of three PCR primer sets for identification of vanB gene carriage in feces and correlation with carriage of vancomycin-resistant enterococci: interference by vanB-containing anaerobic bacilli. . Antimicrob Agents Chemother 49, 7781. [View Article] [PubMed]
    [Google Scholar]
  5. Berry D., Schwab C., Milinovich G., Reichert J., Ben Mahfoudh K., Decker T., Engel M., Hai B., Hainzl E. & other authors ( 2012 ). Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. . ISME J 6, 20912106. [View Article] [PubMed]
    [Google Scholar]
  6. Brennan N. M., Ward A. C., Beresford T. P., Fox P. F., Goodfellow M., Cogan T. M. ( 2002 ). Biodiversity of the bacterial flora on the surface of a smear cheese. . Appl Environ Microbiol 68, 820830. [View Article] [PubMed]
    [Google Scholar]
  7. Brill J. A., Wiegel J. ( 1997 ). Differentiation between spore-forming and asporogenic bacteria using a PCR and Southern hybridization based method. . J Microbiol Methods 31, 2936. [View Article]
    [Google Scholar]
  8. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T. L. ( 2009 ). blast+: architecture and applications. . BMC Bioinformatics 10, 421. [View Article] [PubMed]
    [Google Scholar]
  9. Clavel T., Mapesa J. O. ( 2013 ). Phenolics in human nutrition: importance of the intestinal microbiome for isoflavone and lignan bioavailability. . In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, pp. 24332463. Edited by Ramawat K. G., Mérillon J.-M. . Heidelberg:: Springer;. [View Article]
    [Google Scholar]
  10. Clavel T., Charrier C., Braune A., Wenning M., Blaut M., Haller D. ( 2009 ). Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov.. Int J Syst Evol Microbiol 59, 18051812. [View Article] [PubMed]
    [Google Scholar]
  11. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. ( 1994 ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44, 812826. [View Article] [PubMed]
    [Google Scholar]
  12. Cotta M. A., Whitehead T. R., Falsen E., Moore E., Lawson P. A. ( 2009 ). Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. . Int J Syst Evol Microbiol 59, 150155. [View Article] [PubMed]
    [Google Scholar]
  13. Daniel H., Moghaddas Gholami A., Berry D., Desmarchelier C., Hahne H., Loh G., Mondot S., Lepage P., Rothballer M. & other authors ( 2014 ). High-fat diet alters gut microbiota physiology in mice. . ISME J 8, 295308. [View Article] [PubMed]
    [Google Scholar]
  14. Dolinšek J., Lagkouvardos I., Wanek W., Wagner M., Daims H. ( 2013 ). Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp.. Appl Environ Microbiol 79, 20272037. [View Article] [PubMed]
    [Google Scholar]
  15. Duck L. W., Walter M. R., Novak J., Kelly D., Tomasi M., Cong Y., Elson C. O. ( 2007 ). Isolation of flagellated bacteria implicated in Crohn’s disease. . Inflamm Bowel Dis 13, 11911201. [View Article] [PubMed]
    [Google Scholar]
  16. Ezaki T., Li N., Hashimoto Y., Miura H., Yamamoto H. ( 1994 ). 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov.. Int J Syst Bacteriol 44, 130136. [View Article] [PubMed]
    [Google Scholar]
  17. Goh S. H., Potter S., Wood J. O., Hemmingsen S. M., Reynolds R. P., Chow A. W. ( 1996 ). HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. . J Clin Microbiol 34, 818823.[PubMed]
    [Google Scholar]
  18. Goodman A. L., Kallstrom G., Faith J. J., Reyes A., Moore A., Dantas G., Gordon J. I. ( 2011 ). Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. . Proc Natl Acad Sci U S A 108, 62526257. [View Article] [PubMed]
    [Google Scholar]
  19. Hedberg M. E., Moore E. R., Svensson-Stadler L., Hörstedt P., Baranov V., Hernell O., Wai S. N., Hammarström S., Hammarström M. L. ( 2012 ). Lachnoanaerobaculum gen. nov., a new genus in the Lachnospiraceae: characterization of Lachnoanaerobaculum umeaense gen. nov., sp. nov., isolated from the human small intestine, and Lachnoanaerobaculum orale sp. nov., isolated from saliva, and reclassification of Eubacterium saburreum (Prévot 1966) Holdeman and Moore 1970 as Lachnoanaerobaculum saburreum comb. nov.. Int J Syst Evol Microbiol 62, 26852690. [View Article] [PubMed]
    [Google Scholar]
  20. Hill J. E., Penny S. L., Crowell K. G., Goh S. H., Hemmingsen S. M. ( 2004 ). cpnDB: a chaperonin sequence database. . Genome Res 14, 16691675. [View Article] [PubMed]
    [Google Scholar]
  21. Hörmannsperger G., Clavel T., Haller D. ( 2012 ). Gut matters: microbe-host interactions in allergic diseases. . J Allergy Clin Immunol 129, 14521459. [View Article] [PubMed]
    [Google Scholar]
  22. Kläring K., Hanske L., Bui N., Charrier C., Blaut M., Haller D., Plugge C. M., Clavel T. ( 2013 ). Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine. . Int J Syst Evol Microbiol 63, 46064612. [View Article] [PubMed]
    [Google Scholar]
  23. Kodama Y., Shumway M., Leinonen R. International Nucleotide Sequence Database Collaboration ( 2012 ). The Sequence Read Archive: explosive growth of sequencing data. . Nucleic Acids Res 40 (Database issue), D54D56. [View Article] [PubMed]
    [Google Scholar]
  24. Lagier J. C., Armougom F., Million M., Hugon P., Pagnier I., Robert C., Bittar F., Fournous G., Gimenez G. & other authors ( 2012 ). Microbial culturomics: paradigm shift in the human gut microbiome study. . Clin Microbiol Infect 18, 11851193.[PubMed] [CrossRef]
    [Google Scholar]
  25. Lagkouvardos I., Weinmaier T., Lauro F. M., Cavicchioli R., Rattei T., Horn M. ( 2014 ). Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae . . ISME J 8, 115125. [View Article] [PubMed]
    [Google Scholar]
  26. Lechner S., Mayr R., Francis K. P., Prüss B. M., Kaplan T., Wiessner-Gunkel E., Stewart G. S., Scherer S. ( 1998 ). Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. . Int J Syst Bacteriol 48, 13731382. [View Article] [PubMed]
    [Google Scholar]
  27. Liu C., Finegold S. M., Song Y., Lawson P. A. ( 2008 ). Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 58, 18961902. [View Article] [PubMed]
    [Google Scholar]
  28. Louis P., Flint H. J. ( 2009 ). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. . FEMS Microbiol Lett 294, 18. [View Article] [PubMed]
    [Google Scholar]
  29. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R., Jarrin C., Chardon P. & other authors ( 2006 ). Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. . Gut 55, 205211. [View Article] [PubMed]
    [Google Scholar]
  30. Moore W. E. C., Johnson J. L., Holdeman L. V. ( 1976 ). Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus . . Int J Syst Bacteriol 26, 238252. [View Article]
    [Google Scholar]
  31. Nilsson J., Svensson B., Ekelund K., Christiansson A. ( 1998 ). A RAPD-PCR method for large-scale typing of Bacillus cereus . . Lett Appl Microbiol 27, 168172. [View Article] [PubMed]
    [Google Scholar]
  32. Pfeiffer N., Desmarchelier C., Blaut M., Daniel H., Haller D., Clavel T. ( 2012 ). Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. . Arch Microbiol 194, 901907. [View Article] [PubMed]
    [Google Scholar]
  33. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F. & other authors ( 2010 ). A human gut microbial gene catalogue established by metagenomic sequencing. . Nature 464, 5965. [View Article] [PubMed]
    [Google Scholar]
  34. Rainey F. A., Janssen P. H. ( 1995 ). Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus . . FEMS Microbiol Lett 129, 6973.[PubMed]
    [Google Scholar]
  35. Rhuland L., Work E., Denman R., Hoare D. ( 1955 ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77, 48444846. [View Article]
    [Google Scholar]
  36. Rogers G. M., Baecker A. A. W. ( 1991 ). Clostridium xylanolyticum sp. nov., an anaerobic xylanolytic bacterium from decayed Pinus patula wood chips. . Int J Syst Bacteriol 41, 140143. [View Article]
    [Google Scholar]
  37. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Päuker O., Hippe H. ( 1997 ). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov.. Int J Syst Bacteriol 47, 11341139. [View Article] [PubMed]
    [Google Scholar]
  38. Tamura K., Nei M. ( 1993 ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10, 512526.[PubMed]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  40. Wang M., Ahrné S., Jeppsson B., Molin G. ( 2005 ). Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. . FEMS Microbiol Ecol 54, 219231. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000030
Loading
/content/journal/ijsem/10.1099/ijs.0.000030
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error