1887

Abstract

A novel hyperthermophilic, anaerobic, archaeon was isolated from a terrestrial hot spring at Uzon Caldera, Kronotsky Nature Reserve, Kamchatka, Russia. The isolate, strain 1860, grew optimally at 90–95 °C and pH 6.0–7.0. The cells were non-motile straight rods, 1.5–5.0 µm in length, covered with surface-layer lattice. Strain 1860 utilized complex proteinaceous compounds as electron donors and ferrihydrite, Fe(III) citrate, nitrate, thiosulfate, selenite, selenate and arsenate as electron acceptors for growth. The sequence of the 16S rRNA gene of strain 1860 had 97.9–98.7 % similarity with those of members of the genus . On the basis of its physiological properties and phylogenetic analyses including genome to genome hybridization, the isolate is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is 1860 ( = DSM 28942 = VKM B-2856).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000027
2015-03-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/851.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000027&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Amo T., Paje M. L. F., Inagaki A., Ezaki S., Atomi H., Imanaka T.. ( 2002;). Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. . Archaea 1:, 113–121. [CrossRef][PubMed]
    [Google Scholar]
  3. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L.. ( 1999;). GenBank. . Nucleic Acids Res 27:, 12–17. [CrossRef][PubMed]
    [Google Scholar]
  4. Chan P. P., Cozen A. E., Lowe T. M.. ( 2013;). Reclassification of Thermoproteus neutrophilus Stetter and Zillig 1989 as Pyrobaculum neutrophilum comb. nov. based on phylogenetic analysis. . Int J Syst Evol Microbiol 63:, 751–754. [CrossRef][PubMed]
    [Google Scholar]
  5. Feinberg L. F., Srikanth R., Vachet R. W., Holden J. F.. ( 2008;). Constraints on anaerobic respiration in the hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. . Appl Environ Microbiol 74:, 396–402. [CrossRef][PubMed]
    [Google Scholar]
  6. Fischer F., Zillig W., Stetter K. O., Schreiber G.. ( 1983;). Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. . Nature 301:, 511–513. [CrossRef][PubMed]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  8. Huber R., Kristjansson J. K., Stetter K. O.. ( 1987;). Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. . Arch Microbiol 149:, 95–101. [CrossRef]
    [Google Scholar]
  9. Huber R., Huber H., Stetter K. O.. ( 2000;). Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. . FEMS Microbiol Rev 24:, 615–623. [CrossRef][PubMed]
    [Google Scholar]
  10. Itoh T., Nomura N., Sako Y.. ( 2003;). Distribution of 16S rRNA introns among the family Thermoproteaceae and their evolutionary implications. . Extremophiles 7:, 229–233.[PubMed]
    [Google Scholar]
  11. Mardanov A. V., Gumerov V. M., Slobodkina G. B., Beletsky A. V., Bonch-Osmolovskaya E. A., Ravin N. V., Skryabin K. G.. ( 2012;). Complete genome sequence of strain 1860, a crenarchaeon of the genus Pyrobaculum able to grow with various electron acceptors. . J Bacteriol 194:, 727–728. [CrossRef][PubMed]
    [Google Scholar]
  12. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14:, 60. [CrossRef][PubMed]
    [Google Scholar]
  13. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  14. Sako Y., Nunoura T., Uchida A.. ( 2001;). Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 degrees C. . Int J Syst Evol Microbiol 51:, 303–309.[PubMed]
    [Google Scholar]
  15. Salman V., Amann R., Shub D. A., Schulz-Vogt H. N.. ( 2012;). Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. . Proc Natl Acad Sci U S A 109:, 4203–4208. [CrossRef][PubMed]
    [Google Scholar]
  16. Slobodkin A., Reysenbach A.-L., Strutz N., Dreier M., Wiegel J.. ( 1997;). Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. . Int J Syst Bacteriol 47:, 541–547. [CrossRef][PubMed]
    [Google Scholar]
  17. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A.. ( 1999;). Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. . Int J Syst Bacteriol 49:, 1471–1478. [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  21. Trueper H. G., Schlegel H. G.. ( 1964;). Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. . Antonie van Leeuwenhoek 30:, 225–238. [CrossRef][PubMed]
    [Google Scholar]
  22. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R.. ( 1998;). Microbiological evidence for Fe(III) reduction on early Earth. . Nature 395:, 65–67. [CrossRef][PubMed]
    [Google Scholar]
  23. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O.. ( 1993;). Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. . Appl Environ Microbiol 59:, 2918–2926.[PubMed]
    [Google Scholar]
  24. Wolin E. A., Wolin M. J., Wolfe R. S.. ( 1963;). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
  25. Yokobori S., Itoh T., Yoshinari S., Nomura N., Sako Y., Yamagishi A., Oshima T., Kita K., Watanabe Y.. ( 2009;). Gain and loss of an intron in a protein-coding gene in Archaea: the case of an archaeal RNA pseudouridine synthase gene. . BMC Evol Biol 9:, 198. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000027
Loading
/content/journal/ijsem/10.1099/ijs.0.000027
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error