1887

Abstract

A bacterial strain designated 6B-8 was isolated from crude oil from Daqing oilfield, China. Cells of strain 6B-8 were Gram-negative, aerobic, dimorphic and reproduced by means of binary fission. Strain 6B-8 could grow at 20–37 °C, pH 8–10 and 1–5 % (w/v) NaCl. Its genomic DNA G+C content was 62.0 mol%. The predominant cellular fatty acids were Cω7, C, C and 11-methyl Cω7 and the main hydroxy fatty acids were C 3-OH and C 3-OH when grown on marine agar 2216. The major quinone was Q-10 and the major polar lipids were three unidentified glycolipids. Phylogenetic analysis revealed that strain 6B-8 was a member of the family , sharing 99.6 and 99.4 % 16S rRNA gene sequence similarity with LMG 27140 and SLG210-30A1, respectively, and less than 94.4 % similarity with the type strains of other members of the family . However, the DNA–DNA relatedness between strain 6B-8 and related strains LMG 27140 and SLG210-30A1 was 36±5 and 42±5 %, respectively. In addition, several phenotypic and genotypic features allowed differentiation of strain 6B-8 from LMG 27140 and SLG210-30A1. Therefore, strain 6B-8 represents a novel species of genus , for which the name sp. nov. is proposed. The type strain is 6B-8 ( = CGMCC 1.12428 = LMG 27410).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000023
2015-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/838.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000023&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Strömpl C., Meyer H., Lindholst S., Moore E. R., Christ R., Vancanneyt M., Tindall B. J., Bennasar A. et al. ( 1999;). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. . Int J Syst Bacteriol 49:, 1053–1073. [CrossRef][PubMed]
    [Google Scholar]
  2. Abraham W. R., Lünsdorf H., Vancanneyt M., Smit J.. ( 2013;). Cauliform bacteria lacking phospholipids from an abyssal hydrothermal vent: proposal of Glycocaulis abyssi gen. nov., sp. nov., belonging to the family Hyphomonadaceae. . Int J Syst Evol Microbiol 63:, 2207–2215. [CrossRef][PubMed]
    [Google Scholar]
  3. Achuthan C., Kumar V. J. R., Manju N. J., Philip R., Singh I. S. B.. ( 2006;). Development of nitrifying bacterial consortia for immobilizing in nitrifying bioreactors designed for penaeid and non-penaeid larval rearing systems in the tropics. . Indian J Mar Sci 35:, 240–248.
    [Google Scholar]
  4. Anast N., Smit J.. ( 1988;). Isolation and characterization of marine caulobacters and assessment of their potential for genetic experimentation. . Appl Environ Microbiol 54:, 809–817.[PubMed]
    [Google Scholar]
  5. Andrews J. M.. ( 2008;). BSAC standardized disc susceptibility testing method (version 7). . J Antimicrob Chemother 62:, 256–278. [CrossRef][PubMed]
    [Google Scholar]
  6. Cai M., Wang L., Cai H., Li Y., Wang Y. N., Tang Y. Q., Wu X. L.. ( 2011;). Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. . Int J Syst Evol Microbiol 61:, 1767–1775. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen M. H., Sheu S. Y., Chen C. A., Wang J. T., Chen W. M.. ( 2012;). Oceanicaulis stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. . Int J Syst Evol Microbiol 62:, 2241–2246. [CrossRef][PubMed]
    [Google Scholar]
  8. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  10. Embley T. M.. ( 1991;). The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. . Lett Appl Microbiol 13:, 171–174. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  12. Feng L., Wang W., Cheng J., Ren Y., Zhao G., Gao C., Tang Y., Liu X., Han W. et al. ( 2007;). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. . Proc Natl Acad Sci U S A 104:, 5602–5607. [CrossRef][PubMed]
    [Google Scholar]
  13. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  14. Fraser S. L., Jorgensen J. H.. ( 1997;). Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. . Antimicrob Agents Chemother 41:, 2738–2741.[PubMed]
    [Google Scholar]
  15. Gong X. C., Liu Z. S., Guo P., Chi C. Q., Chen J., Wang X. B., Tang Y. Q., Wu X. L., Liu C. Z.. ( 2012;). Bacteria in crude oil survived autoclaving and stimulated differentially by exogenous bacteria. . PLoS ONE 7:, e40842. [CrossRef][PubMed]
    [Google Scholar]
  16. Henrici A. T., Johnson D. E.. ( 1935;). Studies of freshwater bacteria. II. Stalked bacteria, a new order of schizomycetes. . J Bacteriol 30:, 61–93.[PubMed]
    [Google Scholar]
  17. Jadhav V. V., Jamle M. M., Pawar P. D., Devare M. N., Bhadekar R. K.. ( 2010;). Fatty acid profiles of PUFA producing Antarctic bacteria: correlation with RAPD analysis. . Ann Microbiol 60:, 693–699. [CrossRef]
    [Google Scholar]
  18. Kates M., Work T. S., Work E.. ( 1972;). In Techniques of Lipidology: Isolation, Analysis and Identification of Lipids (Laboratory Techniques in Biochemistry and Molecular Biology, vol. 3 part 2), pp. 393–469. New York:: Elsevier;. [CrossRef]
    [Google Scholar]
  19. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  20. Lv X. L., Xie B. S., Cai M., Geng S., Tang Y. Q., Wang Y. N., Cui H. L., Liu X. Y., Ye S. Y., Wu X. L.. ( 2014;). Glycocaulis albus sp. nov., a moderately halophilic dimorphic prosthecate bacterium isolated from petroleum-contaminated saline soil. . Int J Syst Evol Microbiol 64:, 3181–3187. [CrossRef][PubMed]
    [Google Scholar]
  21. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr, Scheltgen E.. ( 1970;). Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. . J Bacteriol 101:, 333–338.[PubMed]
    [Google Scholar]
  22. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  23. Moschetti G., Blaiotta G., Aponte M., Catzeddu P., Villani F., Deiana P., Coppola S.. ( 1998;). Random amplified polymorphic DNA and amplified ribosomal DNA spacer polymorphism: powerful methods to differentiate Streptococcus thermophilus strains. . J Appl Microbiol 85:, 25–36. [CrossRef][PubMed]
    [Google Scholar]
  24. Nie Y., Tang Y. Q., Li Y., Chi C. Q., Cai M., Wu X. L.. ( 2012;). The genome sequence of Polymorphum gilvum SL003B-26A1T reveals its genetic basis for crude oil degradation and adaptation to the saline soil. . PLoS ONE 7:, e31261. [CrossRef][PubMed]
    [Google Scholar]
  25. Nie Y., Fang H., Li Y., Chi C. Q., Tang Y. Q., Wu X. L.. ( 2013;). The genome of the moderate halophile Amycolicicoccus subflavus DQS3-9A1T reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment. . PLoS ONE 8:, e70986. [CrossRef][PubMed]
    [Google Scholar]
  26. Reginensi S. M., González M. J., Olivera J. A., Sosa M., Juliano P., Bermúdez J.. ( 2011;). RAPD-based screening for spore-forming bacterial populations in Uruguayan commercial powdered milk. . Int J Food Microbiol 148:, 36–41. [CrossRef][PubMed]
    [Google Scholar]
  27. Rzhetsky A., Nei M.. ( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10:, 1073–1095.[PubMed]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Stahl D. A., Key R., Flesher B., Smit J.. ( 1992;). The phylogeny of marine and freshwater caulobacters reflects their habitat. . J Bacteriol 174:, 2193–2198.[PubMed]
    [Google Scholar]
  31. Strömpl C., Hold G. L., Lünsdorf H., Graham J., Gallacher S., Abraham W. R., Moore E. R. B., Timmis K. N.. ( 2003;). Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. . Int J Syst Evol Microbiol 53:, 1901–1906. [CrossRef][PubMed]
    [Google Scholar]
  32. Sun J. Q., Xu L., Zhang Z., Li Y., Tang Y. Q., Wu X. L.. ( 2014;). Diverse bacteria isolated from microtherm oil-production water. . Antonie van Leeuwenhoek 105:, 401–411. [CrossRef][PubMed]
    [Google Scholar]
  33. Takai K., Inoue A., Horikoshi K.. ( 2002;). Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. . Int J Syst Evol Microbiol 52:, 1089–1095. [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  35. Tang S.-K., Li W.-J., Wang D., Zhang Y.-G., Xu L.-H., Jiang C.-L.. ( 2003;). Studies of the biological characteristics of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. . Actinomycetologica 17:, 6–10. [CrossRef]
    [Google Scholar]
  36. Tang Y. Q., Li Y., Zhao J. Y., Chi C. Q., Huang L. X., Dong H. P., Wu X. L.. ( 2012;). Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. . PLoS ONE 7:, e33535. [CrossRef][PubMed]
    [Google Scholar]
  37. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  38. Townsend G. T., Prince R. C., Suflita J. M.. ( 2003;). Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. . Environ Sci Technol 37:, 5213–5218. [CrossRef][PubMed]
    [Google Scholar]
  39. Truu J., Talpsep E., Heinaru E., Stottmeister U., Wand H., Heinaru A.. ( 1999;). Comparison of API 20NE and Biolog GN identification systems assessed by techniques of multivariate analyses. . J Microbiol Methods 36:, 193–201. [CrossRef][PubMed]
    [Google Scholar]
  40. Wang L. T., Lee F. L., Tai C. J., Kasai H.. ( 2007;). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. . Int J Syst Evol Microbiol 57:, 1846–1850. [CrossRef][PubMed]
    [Google Scholar]
  41. Wang Y. N., Chi C. Q., Cai M., Lou Z. Y., Tang Y. Q., Zhi X. Y., Li W. J., Wu X. L., Du X.. ( 2010;). Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. . Int J Syst Evol Microbiol 60:, 638–643. [CrossRef][PubMed]
    [Google Scholar]
  42. Weiner R. M., Melick M., O’Neill K., Quintero E.. ( 2000;). Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. . Int J Syst Evol Microbiol 50:, 459–469. [CrossRef][PubMed]
    [Google Scholar]
  43. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J.. ( 1983;). Numerical classification of Streptomyces and related genera. . J Gen Microbiol 129:, 1743–1813.[PubMed]
    [Google Scholar]
  44. Wu X. L., Yu S. L., Gu J., Zhao G. F., Chi C. Q.. ( 2009;). Filomicrobium insigne sp. nov., isolated from an oil-polluted saline soil. . Int J Syst Evol Microbiol 59:, 300–305. [CrossRef][PubMed]
    [Google Scholar]
  45. Xue D. W., Feng S. G., Zhao H. Y., Jiang H., Shen B., Shi N., Lu J. J., Liu J. J., Wang H. Z.. ( 2010;). The linkage maps of Dendrobium species based on RAPD and SRAP markers. . J Genet Genomics 37:, 197–204. [CrossRef][PubMed]
    [Google Scholar]
  46. Yamamoto S., Harayama S.. ( 1995;). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. . Appl Environ Microbiol 61:, 1104–1109.[PubMed]
    [Google Scholar]
  47. Yamamoto S., Bouvet P. J., Harayama S.. ( 1999;). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. . Int J Syst Bacteriol 49:, 87–95. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000023
Loading
/content/journal/ijsem/10.1099/ijs.0.000023
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error