1887

Abstract

An obligately anaerobic bacterium, designated strain GK12, was isolated from an anaerobic digester in Fukagawa, Hokkaido Prefecture, Japan. The cells of strain GK12 were non-motile, non-spore-forming cocci that commonly occurred in chains. 16S rRNA gene sequence analysis revealed that strain GK12 was affiliated with the family in the phylum and showed 91.8 % sequence similarity to the most closely related species, . The strain grew at 30–50 °C (optimally at 40 °C) and at pH 5.5–8.5 (optimally at pH 7.5). The main end product of glucose fermentation was lactate. Yeast extract was required for growth. The strain contained C, C 1,1-dimethoxyalkane (DMA), C DMA and C DMA as the major cellular fatty acids (>10 % of the total). The polar lipid profile was composed of phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The whole-cell sugars were galactose, rhamnose and ribose. The cell-wall murein contained alanine, glutamic acid, lysine, serine and threonine, but not diaminopimelic acid. The G+C content of the genomic DNA was 47.7 mol%. Based on phenotypic, phylogenetic and chemotaxonomic properties, a novel genus and species, gen. nov., sp. nov., is proposed to accommodate strain GK12 ( = NBRC 108915 = DSM 25799).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000021
2015-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/805.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000021&mimeType=html&fmt=ahah

References

  1. Barnes E. M., Impey C. S., Stevens B. J. H., Peel J. L.. ( 1977;). Streptococcus pleomorphus sp. nov.: an anaerobic streptococcus isolated mainly from the caeca of birds. . J Gen Microbiol 102:, 45–53. [CrossRef][PubMed]
    [Google Scholar]
  2. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  3. Bosshard P. P., Zbinden R., Altwegg M.. ( 2002;). Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. . Int J Syst Evol Microbiol 52:, 1263–1266. [CrossRef][PubMed]
    [Google Scholar]
  4. Cato E. P., Salmon C. W., Holdeman L. V.. ( 1974;). Eubacterium cylindroides (Rocchi) Holdeman and Moore: emended description and designation of neotype strain. . Int J Syst Bacteriol 24:, 256–259. [CrossRef]
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44:, 812–826. [CrossRef][PubMed]
    [Google Scholar]
  6. De Maesschalck C., Van Immerseel F., Eeckhaut V., De Baere S., Cnockaert M., Croubels S., Haesebrouck F., Ducatelle R., Vandamme P.. ( 2014;). Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. . Int J Syst Evol Microbiol 64:, 3877–3884. [CrossRef][PubMed]
    [Google Scholar]
  7. Dittmer J. C., Lester R. L.. ( 1964;). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. . J Lipid Res 5:, 126–127.[PubMed]
    [Google Scholar]
  8. Downes J., Olsvik B., Hiom S. J., Spratt D. A., Cheeseman S. L., Olsen I., Weightman A. J., Wade W. G.. ( 2000;). Bulleidia extructa gen. nov., sp. nov., isolated from human oral cavities. . Int J Syst Evol Microbiol 50:, 979–983. [CrossRef][PubMed]
    [Google Scholar]
  9. DSMZ ( 1983;). Catalogue of Strains, , 3rd edn.. Braunschweig:: Gesellschaft für Biotechnologische Forschung;.
    [Google Scholar]
  10. Eggerth A. H.. ( 1935;). The Gram-positive non-spore-bearing anaerobic bacilli of human feces. . J Bacteriol 30:, 277–299.[PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  12. Greetham H. L., Gibson G. R., Giffard C., Hippe H., Merkhoffer B., Steiner U., Falsen E., Collins M. D.. ( 2004;). Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. . Anaerobe 10:, 301–307. [CrossRef][PubMed]
    [Google Scholar]
  13. Jacin H., Mishkin A. R.. ( 1965;). Separation of carbohydrates on borate-impregnated silica gel G plates. . J Chromatogr A 18:, 170–173. [CrossRef][PubMed]
    [Google Scholar]
  14. Kageyama A., Benno Y.. ( 2000a;). Catenibacterium mitsuokai gen. nov., sp. nov., a Gram-positive anaerobic bacterium isolated from human faeces. . Int J Syst Evol Microbiol 50:, 1595–1599. [CrossRef][PubMed]
    [Google Scholar]
  15. Kageyama A., Benno Y.. ( 2000b;). Coprobacillus catenaformis gen. nov., sp. nov., a new genus and species isolated from human feces. . Microbiol Immunol 44:, 23–28. [CrossRef][PubMed]
    [Google Scholar]
  16. Kageyama A., Benno Y.. ( 2000c;). Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solobacterium moorei gen. nov., sp. nov.. Microbiol Immunol 44:, 223–227. [CrossRef][PubMed]
    [Google Scholar]
  17. Kamagata Y., Mikami E.. ( 1991;). Isolation and characterization of a novel thermophilic Methanosaeta strain. . Int J Syst Bacteriol 41:, 191–196. [CrossRef]
    [Google Scholar]
  18. Kanno M., Katayama T., Tamaki H., Mitani Y., Meng X.-Y., Hori T., Narihiro T., Morita N., Hoshino T.. & other authors ( 2013;). Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance. . Appl Environ Microbiol 79:, 6998–7005. [CrossRef][PubMed]
    [Google Scholar]
  19. Katayama T., Kanno M., Morita N., Hori T., Narihiro T., Mitani Y., Kamagata Y.. ( 2014;). An oleaginous bacterium that intrinsically accumulates long-chain free fatty acids in its cytoplasm. . Appl Environ Microbiol 80:, 1126–1131. [CrossRef][PubMed]
    [Google Scholar]
  20. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  21. Migula W.. ( 1990;). System der Bakterien, vol. 2. Jena:: Gustav Fischer;.
    [Google Scholar]
  22. Nichols B. W., James A. T.. ( 1964;). The lipids of plant storage tissue. . Fette Seifen Anstrichm 66:, 1003–1006. [CrossRef]
    [Google Scholar]
  23. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Salvetti E., Felis G. E., Dellaglio F., Castioni A., Torriani S., Lawson P. A.. ( 2011;). Reclassification of Lactobacillus catenaformis (Eggerth 1935) Moore and Holdeman 1970 and Lactobacillus vitulinus Sharpe et al. 1973 as Eggerthia catenaformis gen. nov., comb. nov. and Kandleria vitulina gen. nov., comb. nov., respectively. . Int J Syst Evol Microbiol 61:, 2520–2524. [CrossRef][PubMed]
    [Google Scholar]
  26. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  27. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H.. & other authors ( 2009;). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. . Appl Environ Microbiol 75:, 7537–7541. [CrossRef][PubMed]
    [Google Scholar]
  28. Schubert K., Fiedler F.. ( 2001;). Structural investigations on the cell surface of Erysipelothrix rhusiopathiae. . Syst Appl Microbiol 24:, 26–30. [CrossRef][PubMed]
    [Google Scholar]
  29. Skerman V. B. D., McGowan V., Sneath P. H. A.. ( 1980;). Approved lists of bacterial names. . Int J Syst Bacteriol 30:, 225–420. [CrossRef]
    [Google Scholar]
  30. Stackebrandt E.. ( 2009;). Family 1. Erysipelotrichaceae. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 3, pp. 1299–1317. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  31. Takahashi T., Fujisawa T., Benno Y., Tamura Y., Sawada T., Suzuki S., Muramatsu M., Mitsuoka T.. ( 1987;). Erysipelothrix tonsillarum sp. nov., isolated from tonsils of apparently healthy pigs. . Int J Syst Bacteriol 37:, 166–168. [CrossRef]
    [Google Scholar]
  32. Takeuchi M., Katayama T., Yamagishi T., Hanada S., Tamaki H., Kamagata Y., Oshima K., Hattori M., Marumo K.. & other authors ( 2014;). Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent. . Int J Syst Evol Microbiol 64:, 462–468. [CrossRef][PubMed]
    [Google Scholar]
  33. Tamaki H., Hanada S., Kamagata Y., Nakamura K., Nomura N., Nakano K., Matsumura M.. ( 2003;). Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. . Int J Syst Evol Microbiol 53:, 519–526. [CrossRef][PubMed]
    [Google Scholar]
  34. Verbarg S., Rheims H., Emus S., Frühling A., Kroppenstedt R. M., Stackebrandt E., Schumann P.. ( 2004;). Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov.. Int J Syst Evol Microbiol 54:, 221–225. [CrossRef][PubMed]
    [Google Scholar]
  35. Willems A., Moore W. E. C., Weiss N., Collins M. D.. ( 1997;). Phenotypic and phylogenetic characterization of some Eubacterium-like isolates containing a novel type B wall murein from human feces: description of Holdemania filiformis gen. nov., sp. nov.. Int J Syst Bacteriol 47:, 1201–1204. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000021
Loading
/content/journal/ijsem/10.1099/ijs.0.000021
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error