1887

Abstract

Strain 853-15A(T) was enriched and isolated from uranium-contaminated aquifer sediment by its ability to grow under anaerobic conditions via the oxidation of lactate coupled to the reduction of anthraquinone-2,6-disulfonate (AQDS) to anthrahydroquinone-2,6-disulfonate (AHQDS). Lactate was oxidized incompletely to acetate and carbon dioxide according to the reaction CH3CHOHCOO(-)+ 2AQDS+H2O --> CH3COO(-)+ 2AHQDS+CO2. Additional electron donors utilized included formate, ethanol, butanol, butyrate, malate and pyruvate. Lactate also supported growth with Fe(III) citrate, Mn(IV) oxide, humic substances, elemental sulfur, 3-chloro-4-hydroxyphenylacetate, trichloroethylene or tetrachloroethylene serving as the electron acceptor. Growth was not observed with sulfate, sulfite, nitrate or fumarate as the terminal electron acceptor. The temperature optimum for growth was 30 degrees C, but growth was also observed at 20 and 37 degrees C. The pH optimum was approximately 7.0. The 16S rDNA sequence of strain 853-15A(T) suggested that it was most closely related to Desulfitobacterium dehalogenans and closely related to Desulfitobacterium chlororespirans and Desulfitobacterium frappieri. The phylogenetic and physiological properties exhibited by strain 853-15A(T) (= ATCC BAA-636(T)) place it within the genus Desulfitobacterium as the type strain of a novel species, Desulfitobacterium metallireducens sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-52-6-1929
2002-11-01
2019-11-12
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-52-6-1929
Loading

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error