Twenty-two fluorescent pseudomonad strains of clinical origin received as Pseudomonas fluorescens (10 strains), Pseudomonasputida (10 strains) and Pseudomonas sp. (2 strains), and 33 type strains of the genus Pseudomonas were studied by numerical analysis based on 280 phenotypic characters. Twelve of the 22 clinical isolates clustered within a specific group, cluster IV. The other strains clustered within groups containing well-characterized fluorescent Pseudomonas species or did not cluster. Strains belonging to cluster IV were phenotypically different from all other clusters and subclusters of fluorescent pseudomonads. DNA-DNA hybridization showed that cluster IV corresponded to a genomic group sharing 72-100% DNA relatedness. DNA-DNA hybridization values with 67 strains representing 30 species of the genus Pseudomonas sensu stricto, including six recently described species (Pseudomonas veronii, Pseudomonas rhodesiae, Pseudomonas libanensis, 'Pseudomonas orientalis', 'Pseudomonas cedrella' and Pseudomonas monteilii), were below 49%, the value found for P. monteilii. The DNA G+C content of the type strain was 63 mol%. Comparison of the 16S rRNA gene sequence of a representative strain of cluster IV (CFML 90-83T) with sequences of other strains of the genus Pseudomonas revealed that strain CFML 90-83T was part of the P. fluorescens intrageneric cluster. On the basis of phenotypic, DNA-DNA hybridization and phylogenetic analyses, a novel species, Pseudomonas mosselii sp. nov., is proposed for the 12 strains of cluster IV. The type strain is P. mosselii CFML 90-83T (= ATCC BAA-99T = CIP 105259T). The P. mosselii strains are phenotypically homogeneous and can be differentiated from other fluorescent species by several phenotypic features, including pyoverdine typing.


Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error