sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise Free

Abstract

A hyperthermophilic archaeon, strain AL585, was isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at latitude 13 ° N and a depth of 2650 m. The isolate was a strictly anaerobic coccus with a mean cell diameter of 1 μm. The optimum temperature, pH and concentration of sea salt for growth were 95 °C, 7·5 and 30 g l-. Under these conditions, the doubling time and cell yield were 0·5 h and 5 x 10 cells ml-. Strain AL585 grew preferentially in media containing complex proteinaceous carbon sources, glucose and elemental sulfur. The G+C content of the DNA was 47 mol%. Sequencing of the 16S rDNA gene showed that strain AL585 belonged to the genus and was probably a new species. This was confirmed by total DNA hybridization. Consequently, this strain is described as a new species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1829
1999-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1829.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1829&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Belkin S., Jannasch H. W. 1985; A new extremely thermophilic, sulfur-reducing heterotrophic, marine bacterium. Arch Microbiol 141:181–186
    [Google Scholar]
  3. Blochl E., Burggraf S., Fiala G.7 other authors 1995; Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J Microbiol & Biotechnol 11:9–16
    [Google Scholar]
  4. Blumentals I. I., Itoh M., Olson G. J., Kelly R. M. 1990; Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1255–1262
    [Google Scholar]
  5. Brock T. D. 1992 Research on thermophiles. Thermophiles: Science and TechnologyA3–A12 Reykjavik: Icetec;
    [Google Scholar]
  6. Brown S. H., Costantino H. R., Kelly R. M. 1990; Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1985–1991
    [Google Scholar]
  7. Canganelfa F., Jones W. J., Gambacorta A., Antranikian G. 1998; Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48:1181–1185
    [Google Scholar]
  8. Dauga P. A. D., Grimont P. A. D. 1991; Nucleotide sequence of 16S rRNA from ten Serratia species. Res Microbiol 141:1139–1149
    [Google Scholar]
  9. Desbruyäres D., Chevaldonnä P., Alayse A.-M.15 other authors 1998; Biology and ecology of the ‘Pompeii worm’ (Alvinella pompejana Desbruyeres and Laubier), a normal dweller of an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Res Part II Top Stud Oceanogr 45:383–422
    [Google Scholar]
  10. Duffaud G. D., d’Hennezel O. B., Peek A. S., Reysenbach A.-L., Kelly R. M. 1998; Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. Syst Appl Microbiol 21:40–49
    [Google Scholar]
  11. Erauso G., Reysenbach A. L., Godfroy A.8 other authors 1993; Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349
    [Google Scholar]
  12. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 30:783–791
    [Google Scholar]
  14. Fiala G., Stetter K. O. 1986; Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61
    [Google Scholar]
  15. Galtier N., Gouy M., Gautier C. 1996; seaview and phylowin: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548
    [Google Scholar]
  16. Godfroy A., Meunier J.-R., Guezennec J., Lesongeur F., Raguänes G., Rimbault A., Barbier G. 1996; Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119
    [Google Scholar]
  17. Godfroy A., Lesongeur F., Raguends G., Quörellou J., Antoine E., Meunier J.-R., Guezennec J., Barbier G. 1997; Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626
    [Google Scholar]
  18. Gonzalez J. M., Masuchi Y., Robb F. T., Ammerman J. W., Maeder D. L, Yanagibayashi M., Tamaoka J., Kato C. 1998; Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130
    [Google Scholar]
  19. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228
    [Google Scholar]
  20. Huber R., Langworthy T. A., König H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333
    [Google Scholar]
  21. Huber R., Stöhr J., Hohenhaus S., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1995; Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164:255–264
    [Google Scholar]
  22. Kengen S. W. M., Luesink E. J., Stams A. J. M., Zehnder A. J. B. 1993; Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312
    [Google Scholar]
  23. Koch R., Spreinat A., Lemke K., Antranikian G. 1991; Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei. Arch Microbiol 155:572–578
    [Google Scholar]
  24. Lake J. A. 1987; A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191
    [Google Scholar]
  25. Leuschner C., Antranikian G. 1995; Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol & Biotechnol 11:95–114
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of desoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  27. Miroshnichenko M. L., Gongadze G. M., Rainey F. A., Kostyukova A. S., Lysenko A. M., Chernyh N. A., Bonch-Osmoiovskaya E. A. 1998; Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48:23–29
    [Google Scholar]
  28. Moensch T. T., Zeikus J. G. 1983; An improved preparation method for a titanium(III) media reductant. J Microbiol Methods 1:199–202
    [Google Scholar]
  29. Popoff M. Y., Coynault C. 1980; Use of DEAE-cellulose filters in the SI nuclease method for bacterial deoxyribonucleic acid hybridization. Ann Microbiol (Paris) 131 A:151–155
    [Google Scholar]
  30. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948
    [Google Scholar]
  31. Raguenes G., Meunier J.-R., Antoine E., Godfrey A., Caprais J.-G, Lesongeur F., Guezennec J., Barbier G. 1995; Biodiversite d’archaea hyperthermophiles des sites hydrothermaux du Pacifique oriental. C R Acad Sci Ser III Sci Vie 318:395–402
    [Google Scholar]
  32. Raguänes G., Christen R., Guezennec J., Pignet P., Barbier G. 1997; Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int J Syst Bacteriol 47:989–995
    [Google Scholar]
  33. Raven N. D. H., Sharp R. J. 1996; Development of defined and minimal media for the growth of the hyperthermophilic archaeon Pyrococcus furiosus Vcl. FEMS Microbiol Lett 146:135–141
    [Google Scholar]
  34. Rüdiger A., Ogbonna J. G, Märkl H., Antranikian G. 1992; Effect of gassing, agitation, substrate supplementation and dialysis on the growth of an extremely thermophilic archaeon Pyrococcus woesei. Appl Microbiol Biotechnol 37:501–504
    [Google Scholar]
  35. Rüdiger A., Jorgensen P. L., Antranikian G. 1995; Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl Environ Microbiol 61:567–575
    [Google Scholar]
  36. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  37. Saitou M., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  39. Schäfer T., Schönheit P. 1991; Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Arch Microbiol 155:366–377
    [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  42. Woese C. R., Kandier O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579
    [Google Scholar]
  43. Zillig W., Holz I., Janekovik D., Schäfer W., Reiter W. D. 1983; The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94
    [Google Scholar]
  44. Zillig W., Holz I., Klenk H.-P., Trent J., Wunderl S., Janekovic D., Imsel E., Haas B. 1987; Pyrococcus woesei, sp. nov., an ultra-thermophilic marine Archaebacterium, representing a novel order, Thermococcales. Syst Appl Microbiol 9:62–70
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1829
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1829
Loading

Data & Media loading...

Most cited Most Cited RSS feed