Successful cultivation of and its comparison with Free

Abstract

, the cause of East African tick-borne relapsing fever, has until now been refractory to growth in laboratory media. This spirochaete has only be propagated in mice or by tissue culture, restricting both yield and purity of cells available for research. The successful isolation of five clinical isolates of from patients in Central Tanzania and their comparison with is reported. Electron microscopy revealed spirochaetal cells with pointed ends, a mean wavelength of 1·8 μm with an amplitude of 0·8 μm, similar to the findings for Cells contained 10 periplasmic flagella inserted at each end of the spirochaete, again comparable with the counts of 8-10 flagella found in PFGE revealed a chromosome of approximately 1 Mb, a large plasmid of approximately 200 kb, and a small plasmid of 11 kb in all strains of and in possessed a further 7-9 plasmids with sizes ranging from 20 to 90 kb. In two isolates of , the profiles were identical. In contrast, all 18 isolates of fell into one of five plasmid patterns with 3-4 plasmids ranging from 25 to 61·5 kb in addition to those of 11 and 200 kb described above. Analysis of the SDS-PAGE profiles of strains revealed a highmolecular-mass band of 33·4-34·2 kDa in four strains (variable large protein, VLP) and a low-molecular-mass band of 22·3 kDa in the remaining strain (variable small protein, VSP). This resembles the protein profiles found in The G+C ratio of was 27·6 mol%. Nucleotide sequence of the gene (16S rRNA) from four isolates revealed 100% identity among these strains and 99·7% homology with three strains deposited by others in GenBank. The gene of eight representative clinical isolates of confirmed their close similarity with .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1793
1999-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1793.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1793&mimeType=html&fmt=ahah

References

  1. Anda P., Sanchez-Yebra W., del Mar Vitutia M., Pastrana E. P., Rodríguez I., Miller N. S., Backenson P. B., Benach J. L. 1996; A new Borrelia species isolated from patients with relapsing fever in Spain. Lancet 348:162–165
    [Google Scholar]
  2. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–523
    [Google Scholar]
  3. Barbour A. G., Hayes S. F. 1986; Biology of Borrelia species. Microbiol Rev 50:381–400
    [Google Scholar]
  4. Barbour A. G., Barrera O., Judd R. C. 1983; Structural analysis of the variable major proteins of Borrelia hermsii. J Exp Med 158:2127–2140
    [Google Scholar]
  5. Barbour A. G., Hayes S. F., Heiland R. A, Schrumpf M. E., Tessier S. L. 1986; A Äorrc/zo-specific monoclonal antibody binds to a flagellar epitope. Infect Immun 52:549–554
    [Google Scholar]
  6. Barclay A. J., Coulter J. B. 1990; Tick-borne relapsing fever in central Tanzania. Trans R Soc Trop Med Hyg 84:852–856
    [Google Scholar]
  7. Baril C., Richaud C., Baranton G., Saint-Girons I. S. 1989; Linear chromosome of Borrelia burgdorferi. Res Microbiol 140:507–516
    [Google Scholar]
  8. Bergstrom S., Barbour A. G., Garon C. F., Hindersson P., Saint-Girons I., Schwan T. G. 1991; Genetics of Borrelia burgdorferi. Scand J Infect Dis 11:suppl.102–107
    [Google Scholar]
  9. Burman N., Bergstrom S. 1994; A variable antigen in the relapsing fever agent Borrelia crocidurae is expressed from a novel expression site. Antigenic variation in relapsing fever Borrelia, thesis by N. Burman (Umea University Medical Dissertations, New Series, no. 407) Umea: Umea University;
    [Google Scholar]
  10. Cadavid D., Pennington P. M., Kerentseva T. A., Bergstrom S., Barbour A. G. 1997; Immunologic and genetic analysis of VmpA of a neurotropic strain of Borrelia turicatae. Infect Immun 65:3352–3360
    [Google Scholar]
  11. Carter C. J., Bergstrom S., Norris S. J., Barbour A. G. 1994; A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect Immun 62:2792–2799
    [Google Scholar]
  12. Casjens S., Delange M., Ley H. L III, Rosa P., Huang W. M. 1995; Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order. J Bacteriol 177:2769–2780
    [Google Scholar]
  13. Cutler S. J., Wright D. J. M., Luckhurst V. H. 1993; Simplified method for the interpretation of immunoblots for Lyme borreliosis. FEMS Immunol Med Microbiol 6:281–286
    [Google Scholar]
  14. Cutler S. J., Fekade D., Hussein K., Knox K. A., Melka A., Cann K., Emilianus A. R., Warrell D. A., Wright D. J. M. 1994; Successful in-vitro cultivation of Borrelia recurrentis. Lancet 343:242
    [Google Scholar]
  15. Cutler S. J., Moss J., Fukunaga M., Wright D. J. M., Fekade D., Warrell D. 1997; Borrelia recurrentis characterization and comparison with relapsing-fever, Lyme-associated, and other Borrelia spp. Int J Syst Bacteriol 47:958–968
    [Google Scholar]
  16. Dupont H. T., La Scola B., Williams R., Raoult D. 1997; A focus of tick-borne relapsing fever in southern Zaire. Clin Infect Dis 25:139–144
    [Google Scholar]
  17. Ferdows M. S., Serwer P., Griess G. A., Norris S. J., Barbour A. G. 1996; Conversion of a linear to a circular plasmid in the relapsing fever agent Borrelia hermsii. J Bacteriol 178:793–800
    [Google Scholar]
  18. Fukunaga M., Takahashi Y., Tsuruta Y., Matsushita O., Ralph D., McClelland M., Nakao M. 1995; Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the Ixodid tick Ixodespersulcatus, the vector for Lyme disease in Japan. Int J Syst Bacteriol 45:804–810
    [Google Scholar]
  19. Hamase A., Takahashi Y., Nohgi K., Fukunaga M. 1996; Homolog of variable major protein genes between Borrelia hermsii and Borrelia miyamotoi. FEMS Microbiol Lett 140:131–137
    [Google Scholar]
  20. Hinnebusch J., Barbour A. G., Restrepo B. I., Schwan T. G. 1998; Population structure of the relapsing fever spirochete Borrelia hermsii as indicated by polymorphism of two multigene families that encode immunogenic outer surface lipoproteins. Infect Immun 66:432–440
    [Google Scholar]
  21. Hovind Hougen K. 1974; Electron microscopy of Borrelia merionesi and Borrelia recurrentis. Acta Pathol Microbiol Scand Sect B 82:799–809
    [Google Scholar]
  22. Hovind Hougen K. 1984; Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale J Biol Med 57:543–548
    [Google Scholar]
  23. Hulinska D., Jirous J., Vaiesova M., Herzogova J. 1989; Ultrastructure of Borrelia burgdorferi in tissues of patients with Lyme disease. J Basic Microbiol 29:73–83
    [Google Scholar]
  24. Jongen V. H. W. M., Van Roosmalen J., Tiems J., Van Holten J., Wetsteyn J. C. F. M. 1997; Tick-borne relapsing fever and pregnancy outcome in rural Tanzania. Acta Obstet Gynecol Scand lb:834–838
    [Google Scholar]
  25. Kitten T., Barbour A. G. 1992; The relapsing fever agent Borrelia hermsii has multiple copies of its chromosome and linear plasmids. Genetics 132:311–324
    [Google Scholar]
  26. Konishi H., Morshed M. G., Akitomi H., Nakazawa T. 1993; In-vitro cultivation of Borrelia duttonii on cultures of SflEp cells. Microbiol Immunol 37:229–232
    [Google Scholar]
  27. Marconi R. T., Samuels D. S., Schwan T. G., Garon C. F. 1993; Identification of a protein in several Borrelia species which is related to OspC of the Lyme disease spirochetes. J Clin Microbiol 31:2577–2583
    [Google Scholar]
  28. Margolis N., Hogan D., Cieplak W., Schwan T. G., Rosa P. A. 1994; Homology between Borrelia burgdorferi OspC and members of the family of Borrelia hermsii variable major proteins. Gene 143:105–110
    [Google Scholar]
  29. Marti Ras N., Lascola B., Postic D., Cutler S. J., Rodhain F., Baranton G., Raoult D. 1996; Phylogenesis of relapsing fever Borrelia. Int J Syst Bacteriol 46:859–865
    [Google Scholar]
  30. Melkert P. W. 1991; Mortality in high risk patients with tickborne relapsing fever analysed by the borrelia-index. East Afr Med J 68:875–879
    [Google Scholar]
  31. Talbert A., Nyange A., Molteni F. 1998; Spraying tick infested houses with lambda-cyhalothrin reduces the incidence of tick-borne relapsing fever in children under five years old. Trans R Soc Trop Med Hyg 92:251–253
    [Google Scholar]
  32. Vidal V., Scragg I. G., Cutler S. J., Rockett K. A., Fekade D., Warrell D. A., Wright D. J. M., Kwiatkowski D. 1998; Variable major lipoprotein is a principal TNF-inducing factor of louse-borne relapsing fever. Nat Med 4:1416–1420
    [Google Scholar]
  33. Walton G. A. 1962 The Ornithodorus moubata superspecies problem in relation to human relapsing fever epidemiology. Aspects of Disease Transmission by Ticks (Royal Zoological Society of London Symposium Series)83–153 London: Royal Zoological Society;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1793
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1793
Loading

Data & Media loading...

Most cited Most Cited RSS feed