Detection of three different types of ‘’ directly from clinical specimens by sequencing, single-strand conformation polymorphism (SSCP) analysis and type-specific PCR of their 16S-23S ribosomal intergenic spacer region Free

Abstract

The 16S-23S rDNA intergenic spacer region of organisms identical with or closely related to ‘’, the uncultivated causative agent of Whipple’s disease, was analysed directly from 38 clinical specimens of 28 patients using a specific nested PCR followed by direct sequencing. As compared to the reference sequence in public databases, two novel ‘’ spacer types were recognized. In the absence of DNA-DNA hybridization data it is uncertain whether the three types found represent subtypes of a single species or three different but closely related species. Methods were developed to detect all three variants by single-strand conformation polymorphism analysis and by type-specific PCR assays, thus allowing the screening of large numbers of specimens. Further studies may provide a clue to the possible associations between the type of infecting strain and the various clinical presentations of Whipple’s disease.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1701
1999-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1701.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1701&mimeType=html&fmt=ahah

References

  1. Altwegg M., Fleisch-Marx A., Goldenberger D., Hailemariam S., Schaffner A., Kissling R. 1996; Spondylodiscitis caused by Tropheryma whippelii. Schweiz Med Wochenschr 126:1495–1499
    [Google Scholar]
  2. Brändle M., Ammann P., Spinas G. A., Dutly F., Galeazzi R. L., Schmid C., Altwegg M. 1999; Relapsing Whipple’s disease presenting with hypopituitarism. Clin Endocrinol 50:399–403
    [Google Scholar]
  3. Dauga C., Miras I., Grimont P. A. D. 1997; Strategy for detection and identification of bacteria based on 16S rRNA genes in suspected cases of Whipple’s disease. J Med Microbiol 46:340–347
    [Google Scholar]
  4. Dobbins W. O. 1987 Whipple’s Disease Springfield, IL: Charles C. Thomas;
    [Google Scholar]
  5. Ehrbar H.-U., Bauerfeind P., Dutly F., Koelz H.-R., Altwegg M. 1999; PCR-positive tests for Tropheryma whippelii in patients without Whipple’s disease. Lancet 353:2214
    [Google Scholar]
  6. Fox G. E., Wisotzkey J. D., Jurtshuk P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  7. Goldenberger D., Künzli A., Vogt P., Zbinden R., Altwegg M. 1997; Molecular analysis of bacterial endocarditis by broadrange PCR amplification and direct sequencing. J Clin Microbiol 35:2733–2739
    [Google Scholar]
  8. Gürtler V., Stanisich V. A. 1996; New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16
    [Google Scholar]
  9. Hinrikson H. P., Dutly F., Altwegg M. 1999; Homogeneity of the 16S-23S ribosomal intergenic spacer region of Tropheryma whippelii in Swiss patients with Whipple’s disease. J Clin Microbiol 37:152–156
    [Google Scholar]
  10. Maiwald M., Ditton H.-J., von Herbay A., Rainey F. A., Stackebrandt E. 1996; Reassessment of the phylogenetic position of the bacterium associated with Whipple’s disease and determination of the 16S-23S ribosomal intergenic spacer sequence. Int J Syst Bacteriol 46:1078–1082
    [Google Scholar]
  11. Maiwald M., Schuhmacher F., Ditton H.-J., von Herbay A. 1998; Environmental occurrence of the Whipple’s disease bacterium (Tropheryma whippelii). Appl Environ Microbiol 64:760–762
    [Google Scholar]
  12. Martínez-Murcia A. J., Esteve C., Garay E., Collins M. D. 1992; Aeromonas allosaccharophila sp. nov., a new mesophilic member of the genus Aeromonas. FEMS Microbiol Lett 91:199–206
    [Google Scholar]
  13. Relman D. A., Schmidt T. M., MacDermott R. P., Falkow S. 1992; Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med 327:293–301
    [Google Scholar]
  14. Rickman L. S., Freeman W. S., Green W. S., Feldman S. T., Sullivan J., Russack V., Relman D. A. 1995; Uveitis caused by Tropheryma whippelii (Whipple’s bacillus). N Engl J Med 322:363–366
    [Google Scholar]
  15. Roth A., Fischer M., Hamid M. E., Michalke S., Ludwig W., Mauch H. 1998; Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol 36:139–147
    [Google Scholar]
  16. Schoedon G., Goldenberger D., Forrer R., Gunz A., Dutly F., Höchli M., Altwegg M., Schaffner A. 1997; Deactivation of macrophages with Interleukin-4 is the key to the isolation of Tropheryma whippelii. J Infect Dis 176:672–677
    [Google Scholar]
  17. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  18. Widjojoatmodjo M. N., Fluit A. C., Verhoef J. 1994; Rapid identification of bacteria by PCR-single-strand conformation polymorphism. J Clin Microbiol 32:3002–3007
    [Google Scholar]
  19. Wilson K. H., Blitchington R., Frothingham R., Wilson J. A. P. 1991; Phylogeny of the Whipple’s-disease-associated bacterium. Lancet 338:474–475
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1701
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1701
Loading

Data & Media loading...

Most cited Most Cited RSS feed