1887

Abstract

Two Gram-positive, non-motile, non-spore-forming, strictly aerobic, pigmented cocci, strains Ben 107 and Ben 108, growing in aggregates were isolated from activated sludge samples by micromanipulation. Both possessed the rare type A3γ’ peptidoglycan. Major menaquinones of strain Ben 107 were MK-9(H) and MK-7(H), and the main cellular fatty acid was 12-methyltetradecanoic acid (ai-C). In strain Ben 108, MK-9(H), MK-9(H) and MK-7(H) were the menaquinones and again the main fatty acid was 12-methyltetradecanoic acid (ai-C). Polar lipids in both strains consisted of phosphatidyl inositol, phosphatidyl glycerol and diphosphatidyl glycerol with two other unidentified glycolipids and phospholipids also present in both. These data, together with the 16S rDNA sequence data, suggest that strain Ben 107 belongs to the genus which presently includes a single recently described species, . Although the taxonomic status of strain Ben 108 is far less certain, on the basis of its 16S rRNA sequence it is also adjudged to be best placed in the genus . The chemotaxonomic characteristics and DNA-DNA hybridization data support the view that Ben 107 and Ben 108 are novel species of the genus . Hence, it is proposed that strain Ben 107 (= ACM 5121) is named as sp. nov. and strain Ben 108 (= ACM 5120) as sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1667
1999-10-01
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1667.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1667&mimeType=html&fmt=ahah

References

  1. Blackall L L, Rossetti S., Christensson C., Cunningham M., Hartman P., Hugenholtz P., Tandoi V. 1997; The characterization and description of representatives of ‘G’ bacteria from activated sludge plants. Lett Appl Microbiol 25:63–69
    [Google Scholar]
  2. Bond P. L, Hugenholtz P., Keller J., Blackall L. L. 1995; Bacterial community structures of polyphosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916
    [Google Scholar]
  3. Bond P. L, Keller J., Blackall L. L. 1997 Bio-P and Non-Bio- P Bacteria identification by a novel microbial approach. Proceedings of the 3rd Australian Biological Nutrient Removal ConferenceBrisbane, Australia25–32 Australian Water and Wastewater Association;
    [Google Scholar]
  4. Buck J. D. 1982; Non-staining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  5. Carucci A., Majone M., Ramadori R., Rossetti S. 1994; Dynamics of phosphorus and organic substrates in anaerobic and aerobic phases of a sequencing batch reactor. Water Sci Technol 30:237–246
    [Google Scholar]
  6. Cech J. S., Hartman P. 1993; Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res 27:1219–1225
    [Google Scholar]
  7. Charfreitag O., Collins M. D., Stackebrandt E. 1988; Reclassification of Arachnia propionica as Propionibacterium propionicus comb. nov. Int J Syst Bacteriol 38:354–357
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  9. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170
    [Google Scholar]
  10. Goodfellow M. 1971; Numerical taxonomy of some Nocardioform bacteria. J Gen Microbiol 69:33–80
    [Google Scholar]
  11. Goodfellow M., Pirouz T. 1982; Numerical classification of Sporoactinomycetes containing meso-diaminopimelic acid in the cell wall. J Gen Microbiol 128:503–527
    [Google Scholar]
  12. Graham L. L. 1992; Freeze-substitution studies of bacteria. Electron Micro sc Rev 5:77–103
    [Google Scholar]
  13. Hucker G. J. 1921; A new modification and application of the Gram stain. J Bacteriol 6:396–397
    [Google Scholar]
  14. Huss V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192
    [Google Scholar]
  15. Jahnke K.-D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  16. Kataoka N., Tokiwa Y., Tanaka Y., Takeda K., Suzuki T. 1996; Enrichment culture and isolation of slow growing bacteria. Appl Microbiol Biotechnol 45:771–777
    [Google Scholar]
  17. Knight G. C., Seviour E. M., Seviour R. J., Soddell J. A., Lindrea K. C., Strachan W., De Grey B., Bayly R. C. 1995; Development of the microbial community of a full scale nutrient removal activated sludge plant during start up. Water Res 29:2085–2093
    [Google Scholar]
  18. Lindsay M. R., Webb R. I., Fuerst J. A. 1997; Pirellulosomes: a new type of membrane-bounded compartment in plancto-mycete bacteria of the genus Pirellula. Microbiology 143:739–748
    [Google Scholar]
  19. Liu W.-T., Mino T., Nakamura K., Matsuo T. 1996; Glycogen accumulating population and its anaerobic substrates uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Water Res 30:75–82
    [Google Scholar]
  20. Maidak B. L, Olsen G. J., Larsen N., Overbeek R., McGaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  21. Maszenan A. M., Seviour R. J., Patel B. K. C., Rees G. N., McDougall B. M. 1997; Amaricoccus gen. nov., a Gramnegative coccus occurring in regular packages or tetrads isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus tamworthensis sp. nov. and Amaricoccus kaplicensis sp. nov. Int J Syst Bacteriol 47:727–734
    [Google Scholar]
  22. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Rees G. N. 1999; Tessaracoccus bendigoensis gen. nov., sp. nov., a Gram-positive coccus occurring in regular packets or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468
    [Google Scholar]
  23. Matsuo Y. 1994; Effect of the anaerobic solid retention time on enhanced biological phosphorus removal. Water Sci Technol 30:193–202
    [Google Scholar]
  24. Matsuzawa Y., Mino T. 1991; Role of glycogen as an intracellular carbon reserve of activated sludge in the competitive growth of filamentous and non filamentous bacteria. Water Sci Technol 23:899–905
    [Google Scholar]
  25. Nakamura K., Hiraishi A., Yoshimi Y., Kawaharasaki M., Masuda K., Kamagata Y. 1995; Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17–22
    [Google Scholar]
  26. Pitcher D. G., Collins M. D. 1991; Phylogenetic analysis of some LL-diaminopimelic acid-containing coryneform bacteria from human skin: description of Propionibacterium innocum sp. nov. FEMS Microbiol Lett 84:295–300
    [Google Scholar]
  27. Randall A. A. 1994 The effect of substrate chemistry on enhanced biological phosphorus removal, intracellular phosphate form and location, and the resulting population structure of sequencing batch reactors receiving synthetic wastewater PhD thesis Auburn University;
    [Google Scholar]
  28. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  29. Rees G. N., Vasiliadis G., May J. W., Bayly R. C. 1992; Differentiation of polyphosphate and poly-β-hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge. FEMS Microbiol Lett 94:171–174
    [Google Scholar]
  30. Schaal K. P. 1986 Genus Arachnia. Bergey’s Manual of Systematic Bacteriology 21332–1342 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  31. Schleifer K.-H., Seidl P. H. 1985 Chemical composition and structure of murein. Chemical Methods in Bacterial Systematics201–219 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  32. Schumann P., Prauser H., Rainey F. A., Stackebrandt E., Hirsch P. 1997; Friedmanniella antarctica gen. nov., sp. nov., an LL-diaminopimelic acid containing actinomycete from Antarctic Sandstone. Int J Syst Bacteriol 47:278–283
    [Google Scholar]
  33. Seviour R. J., Pethica L. M., McClure S. 1984; A simple modified procedure for preparing microbial cells for scanning electron microscopy. Microbiol Methods 3:1–5
    [Google Scholar]
  34. Skerman V. B. D. 1968; A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297
    [Google Scholar]
  35. Smibert R. M., Krieg N. L. 1994 Phenotypic characterization. Methods for General and Molecular Bacteriology607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Sneath P. H. A. 1978 Classification of microorganisms. Essays in Microbiology9/2–9/31 Edited by Norris J. R., Richmond M. H. Chichester: Wiley;
    [Google Scholar]
  37. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy. The Principles and Practices of Numerical Classification San Francisco: W. H. Freeman;
    [Google Scholar]
  38. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  39. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–490
    [Google Scholar]
  40. Tamura T., Takeuchi M., Yokota A. 1994; Luteococcus japonicus gen. nov., sp. nov., a new gram-positive coccus with LL-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 44:348–356
    [Google Scholar]
  41. Ubukata Y. 1994; Some physiological characteristics of a phosphate removing bacterium isolated from anaerobic/ aerobic activated sludge. Water Sci Tech 30:229–235
    [Google Scholar]
  42. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K.-H. 1994; Development of rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60:792–800
    [Google Scholar]
  43. Wayne L G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  44. Winker S., Woese C. R. 1991; A definition of the domain Archaea, Bacteria and Eukarya in terms of small ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310
    [Google Scholar]
  45. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J Gen Microbiol 18:399–416
    [Google Scholar]
  46. Yokota A., Tamura T., Takeuchi M., Weiss N., Stackebrandt E. 1994; Transfer of Propionibacterium innocuum Pitcher & Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. Int J Syst Bacteriol 44:579–582
    [Google Scholar]
  47. Yoshimi Y., Hiraishi A., Nakamura K. 1996; Isolation and characterization of Microsphaera multipartita gen. nov., sp. nov., a polysaccharide accumulating Gram-positive bacterium from activated sludge. Int J Syst Bacteriol 46:519–525
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-49-4-1667
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1667
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error